References
- Tahar, B. H. R.; Ban, T.; Ohya, Y.; Takahashi, Y. J. App. Phys. 1998, 83, 2631 https://doi.org/10.1063/1.367025
- Stotter, J.; Show, Y.; Wang, S.; Swain, G. Chem. Mater. 2005, 17, 4880 https://doi.org/10.1021/cm050762z
- Asanov, A. N.; Wilson, W. W.; Oldham, P. B. Anal. Chem. 1998, 70, 1156 https://doi.org/10.1021/ac970805y
- Zudans, I.; Paddock, J. R.; Kuramitz, H.; Maghasi, A. T.; Wansapura, C. M.; Conklin, S. D.; Kaval, N.; Shtoyko, T.; Monk, D. J.; Bryan, S. A.; Hubler, T. L.; Richardson, J. N.; Seliskar, C. J.; Heineman, W. R. J. Electroanal. Chem. 2004, 565, 311 https://doi.org/10.1016/j.jelechem.2003.10.025
- Das, J.; Aziz, M. A.; Yang, H. J. Am. Chem. Soc. 2006, 128, 16023
- Das, J.; Jo, K.; Lee, J. W.; Yang, H. Anal. Chem. 2007, 79, 2790 https://doi.org/10.1021/ac062291l
- Aziz, M. A.; Park, S.; Jon, S.; Yang, H. Chem. Commun. 2007, 2610
- Xue, D.; Elliott, C. M.; Gong, P.; Grainger, D. W.; Bignozzi, C. A.; Caramori, S. J. Am. Chem. Soc. 2007, 129, 1854 https://doi.org/10.1021/ja067339r
- Gao, Z.; Yang, Z. Anal. Chem. 2006, 78, 1470 https://doi.org/10.1021/ac051726m
- Ulman, A. Chem. Rev. 1996, 96, 1533 https://doi.org/10.1021/cr9502357
- Mirsky, V. M. Trends Anal. Chem. 2002, 21, 439 https://doi.org/10.1016/S0165-9936(02)00601-5
- Yeung, S.-W.; Lee, T. M.-H.; Cai, H.; Hsing, I.-M. Nucleic Acids Res. 2006, 34, e118 https://doi.org/10.1093/nar/gkl702
- Trojanowicz, M. Trends Anal. Chem. 2006, 25, 480 https://doi.org/10.1016/j.trac.2005.11.008
- Jun. F.; Wu, K.; Yi, L.; Li, J. Bull. Korean Chem. Soc. 2005, 26, 1403 https://doi.org/10.5012/bkcs.2005.26.9.1403
- Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. Adv. Mater. 2005, 17, 1729
- Balasubramanian, K.; Burghard, M. Small 2005, 2, 180
- Salzmann, C. G.; Llewellyn, S. A.; Tobias, G.; Ward, M. A. H.; Huh, Y.; Green, M. L. H. Adv. Mater. 2007, 19, 883 https://doi.org/10.1002/adma.200601310
- Zhao, B.; Hu, H.; Yu, A.; Perea, D.; Haddon, C. J. Am. Chem. Soc. 2005, 127, 8197 https://doi.org/10.1021/ja042924i
- Mutin, P. H.; Lafond, V.; Popa, A. F.; Granier, M.; Markey, L.; Dereux, A. Chem. Mater. 2004, 16, 5670 https://doi.org/10.1021/cm035367s
- Mutin, P. H.; Guerrero, G.; Vioux, A. C. R. Chimie 2003, 6, 1153 https://doi.org/10.1016/j.crci.2003.07.006
Cited by
- Preparation of Indium Tin Oxide Nanoparticle-modified 3-Aminopropyltrimethoxysilane-functionalized Indium Tin Oxide Electrode for Electrochemical Sulfide Detection vol.29, pp.7, 2017, https://doi.org/10.1002/elan.201700058
- Electrochemical Sensors Based on Carbon Nanotubes vol.9, pp.4, 2009, https://doi.org/10.3390/s90402289
- Indium Tin Oxide Nanoparticle-modified Glassy Carbon Electrode for Electrochemical Sulfide Detection in Alcoholic Medium vol.34, pp.5, 2018, https://doi.org/10.2116/analsci.17P586
- Platform for Highly Sensitive Alkaline Phosphatase-Based Immunosensors Using 1-Naphthyl Phosphate and an Avidin-Modified Indium Tin Oxide Electrode vol.21, pp.19, 2009, https://doi.org/10.1002/elan.200904641
- Electrochemically Directed Modification of ITO Electrodes and Its Feasibility for the Immunosensor Development vol.30, pp.4, 2009, https://doi.org/10.5012/bkcs.2009.30.4.955
- Synthesis of Trimetallic Au@Pb@Pt Core-shell Nanoparticles and their Electrocatalytic Activity toward Formic Acid and Methanol vol.30, pp.7, 2007, https://doi.org/10.5012/bkcs.2009.30.7.1485
- An Amphiphilic Polymer‐ and Carbon Nanotube‐Modified Indium Tin Oxide Electrode for Sensitive Electrochemical DNA Detection with Low Nonspecific Binding vol.22, pp.22, 2007, https://doi.org/10.1002/elan.201000209
- Amperometric Immunosensor for Myeloperoxidase in Human Serum Based on a Multi-wall Carbon Nanotubes-Ionic Liquid-Cerium Dioxide Film-modified Electrode vol.31, pp.11, 2007, https://doi.org/10.5012/bkcs.2010.31.11.3259
- Fabrication of optimally configured layers of SWCNTs, gold nanoparticles, and glucose oxidase on ITO electrodes for high-power enzymatic biofuel cells vol.36, pp.7, 2007, https://doi.org/10.1007/s11814-019-0278-y
- Carbon Nanofiber and Poly[2‐(methacryloyloxy) ethyl] Trimethylammonium Chloride Composite as a New Benchmark Carbon‐based Electrocatalyst for Sulfide Oxidation vol.16, pp.12, 2007, https://doi.org/10.1002/asia.202100309
- Graphene and Carbon Nanotube‐based Electrochemical Sensing Platforms for Dopamine vol.16, pp.22, 2007, https://doi.org/10.1002/asia.202100898