• Title/Summary/Keyword: Electrochemical biosensors

Search Result 54, Processing Time 0.027 seconds

Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites (CuO/Au@MWCNTs 나노복합재 기반 전기화학적 포도당 바이오센서의 민감도 개선)

  • Park, Mi-Seon;Bae, Tae-Sung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.145-152
    • /
    • 2016
  • In this study, CuO was introduced on MWCNTs dispersed with Au nanoparticles to improve the glucose sensing capability of electrochemical biosensors. Nano-cluster shaped CuO was synthesized due to the presence of Au nanoparticle, which affects glucose sensing performance. The biosensor featuring CuO/Au@MWCNTs nanocomposite as an electrode material when 0.1 mole of CuO was synthesized showed the highest sensitivity of $504.1{\mu}A\;mM^{-1}cm^{-2}$, which is 4 times better than that of MWCNTs based biosensors. In addition, it shows a wider linear range from 0 to 10 mM and lower limit of detection (LOD) of 0.008 mM. These results demonstrate that CuO/Au@MWCNTs nanocomposite sensors are superior to other CuO based biosensors which are attributed that the nano-cluster shaped CuO is favorable for the electrochemical reaction with glucose molecules.

A Study on the Detection Characteristics in Glucose and Fabrication of Bi-Enzyme Electrode using Electrochemical Method (전기화학적 방법을 이용한 다중 효소 전극 제작 및 글루코스 검출 특성에 관한 연구)

  • Han, Kyoung Ho;Shin, In Seong;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.3
    • /
    • pp.66-72
    • /
    • 2020
  • In this study, the development of biosensors capable of bi-enzyme reactions by including Horseradish peroxidase and glucose oxidase was carried out for detection of glucose. The sensors were manufactured using electro deposition method to reduce production time, and screen printed electrodes (SPE) were used to produce economical sensors. To check the bienzyme effect, the sensor was compared and analyzed with single enzyme biosensor. The characteristics of the sensor were evaluated using scanning electron microscopy(SEM), cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), chronoamperometry(CA), and flow injection analysis(FIA). Analysis results from SEM, CV and EIS confirmed that the enzymes are well fixed to the electrode surface. In addition, it was confirmed that bi-enzyme biosensors manufactured from the CA method improved signal performance by 200% compared to single enzyme biosensors. From this results, we were able to explain that HRP and GOD react catalyzed to each other. And the results of FIA showed that the intensity of each current signal was constant when the same concentration of glucose was injected four times. In addition, by analyzing the intensity of current signals for glucose concentrations, the biosensors manufactured in this study showed excellent trends in signal sensitivity, reproducibility and stability.

Graphene Based Electrochemical DNA Biosensor for Detection of False Smut of Rice (Ustilaginoidea virens)

  • Rana, Kritika;Mittal, Jagjiwan;Narang, Jagriti;Mishra, Annu;Pudake, Ramesh Namdeo
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.291-298
    • /
    • 2021
  • False smut caused by Ustilaginoidea virens is an important rice fungal disease that significantly decreases its production. In the recent past, conventional methods have been developed for its detection that is time-consuming and need high-cost equipments. The research and development in nanotechnology have made it possible to assemble efficient recognition interfaces in biosensors. In this study, we present a simple, sensitive, and selective oxidized graphene-based geno-biosensor for the detection of rice false smut. The biosensor has been developed using a probe DNA as a biological recognition element on paper electrodes, and oxidized graphene to enhance the limit of detection and sensitivity of the sensor. Probe single-stranded DNA (ssDNA) and target ssDNA hybridization on the interface surface has been quantitatively measured with the electrochemical analysis tools namely, cyclic voltammetry, and linear sweep voltammetry. To confirm the selectivity of the device, probe hybridization with non-complementary ssDNA target has been studied. In our study, the developed sensor was able to detect up to 10 fM of target ssDNA. The paper electrodes were employed to produce an effective and cost-effective platform for the immobilization of the DNA and can be extended to design low-cost biosensors for the detection of the other plant pathogens.

Applications of Conductive Polymers to Electrochemical Sensors and Energy Conversion Electrodes

  • Kim, Dong-Min;Noh, Hui-Bog;Shim, Yoon-Bo
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.125-139
    • /
    • 2013
  • The electrical conductive polymers (ECPs) reported at my research group are introduced in this review, which works are started from the late Professor Su-Moon Park's pioneering research for polyaniline at the University of New Mexico. The electrochemical and spectroelectrochemical properties and their applications to sensor and energy conversion systems are briefly described. At first, the growth and degradation mechanism of polyaniline describes and we extend to polypyrrole, polyazulene, polydiaminonaphthalenes, and polyterthiophene derivatives. In addition, the preparation of monomer precursors having functional groups is briefly described that can give us many exceptional applications for several chemical reactions. We describe the application of these ECPs for the fabrication of chemical sensors, biosensors, biofuel cells, and solar cells.

High sensitivity biosensor for mycotoxin detection based on conducting polymer supported electrochemically polymerized biopolymers

  • Dhayal, Marshal;Park, Gye-Choon;Park, Kyung-Hee;Gu, Hal-Bon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.243.1-243.1
    • /
    • 2010
  • Devices based on nanomaterials platforms are emerging as a powerful tool for ultrasensitive sensors for the direct detection of biological and chemical species. In this talk, we will report the preparation and the full characterization of electrochemical polymerization of biopolymers platforms and nano-structure formation for electrochemical detection of enzymatic activity and toxic compound in electrolyte for biosensor applications. Formation of an electroactive polymer film of two different compounds has been quantified by observing new redox peak at higher potentials in cyclic voltammogram measurements. RCT value of at various biopolymer concentration based hybrid films has been obtained from electrochemical impedance spectroscopy analysis and possible mechanism for formation of complexes during electrochemical polymerization on conducting substrates has been investigated. Biosensors developed based on these hybrid biopolymers have very high sensitivity.

  • PDF

Nanohybridization of Polyoxometalate and Nanomaterials for Electrochemical Application (전기 화학 응용을 위한 폴리옥소메탈레이트와 나노물질의 나노하이브리드화)

  • Yang, MinHo;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.363-368
    • /
    • 2018
  • Polyoxometalates (POMs) have outstanding properties and a great deal of potential for electrochemical applications. As POMs are highly soluble, the implementation of POMs in various functional materials is required to fully use their potential in electrochemical devices. Here, we will review the recently developed immobilization methods to incorporate POMs into conductive nanomaterials, such as nanocarbons and conducting polymers. Various immobilization strategies involve POMs entrapped in conducting polymer matrix and integration of POMs into nanocarbons using a Langmuir-Blodgett technique, a layer-by-layer self-assembly, and an electrochemical in-situ polymerization. In addition, we will review a variety of electrochemical applications including electrocatalysts for water oxidation, lithium-ion batteries, supercapacitors, and electrochemical biosensors.

Fabrication of Polyimide Film Electrode by Laser Ablation and Application for Electrochemical Glucose Biosensor (Laser ablation을 이용한 폴리이미드 필름 전극제조 및 전기화학적 글루코오즈 바이오센서 응용)

  • Park, Deog-Su
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.357-363
    • /
    • 2013
  • An ultraviolet pulsed laser ablation of polyimide film coated with platinum has been used to enhance the sensitivity for the application as an electrochemical biosensor. Densely packed cones are formed on polyimide surface after UV irradiation which results in increase of surface area. In order to apply the sensitivity improvement of laser ablated polyimide film electrodes, the glucose oxidase modified biosensor was fabricated by using an encapsulation in the gel matrix through sol-gel transition of tetraethoxysliane on the surface of laser ablated polyimide film. The optimum conditions for glucose determination have been characterized with respect to the applied potential and pH. The linear range and detection limit of glucose detection were from 2.0 mM to 18.0 mM and 0.18 mM, respectively. The sensitivity of glucose biosensors fabricated with laser ablated polyimide film is about three times higher than that of plain polyimide film due to increase in surface area by laser ablation.