References
- A. Proust, B. Matt, R. Villanneau, G. Guillemot, P. Gouzerh, and G. Izzet, Functionalization and post-functionalization: A step towards polyoxometalate-based materials, Chem. Soc. Rev., 41, 7605-7622 (2012). https://doi.org/10.1039/c2cs35119f
- J. J. Walsh, A. M. Bond, R. J. Forster, and T. E. Keyes, Hybrid polyoxometalate materials for photo(electro-) chemical applications, Coord. Chem. Rev., 306, 217-234 (2016). https://doi.org/10.1016/j.ccr.2015.06.016
- S. Liu and Z. Tang, Polyoxometalate-based functional nanostructured films: Current progress and future prospects, Nano Today, 5, 267-281 (2010). https://doi.org/10.1016/j.nantod.2010.05.006
- T. Ueda, Electrochemistry of polyoxometalates: from fundamental aspects to applications, ChemElectroChem, 5, 823-838 (2018). https://doi.org/10.1002/celc.201701170
- Y. Ji, L. Huang, J. Hu, C. Streb, and Y.-F. Song, Polyoxometalatefunctionalized nanocarbon materials for energy conversion, energy storage and sensor systems, Energy Environ. Sci., 8, 776-789 (2015). https://doi.org/10.1039/C4EE03749A
- M. Genovese and K. Lian, Polyoxometalate modified inorganicorganic nanocomposite materials for energy storage applications: A review, Curr. Opin. Solid State Mater. Sci., 19, 126-137 (2015). https://doi.org/10.1016/j.cossms.2014.12.002
- M. Yang, S. B. Hong, J. H. Yoon, D. S. Kim, S. W. Jeong, D. E. Yoo, T. J. Lee, K. G. Lee, S. J. Lee, and B. G. Choi, Fabrication of flexible, redoxable, and conductive nanopillar arrays with enhanced electrochemical performance, ACS Appl. Mater. Interfaces, 8, 22220-22226 (2016). https://doi.org/10.1021/acsami.6b06579
- M. Yang, D. S. Kim, J. H. Yoon, S. B. Hong, S. W. Jeong, D. E. Yoo, T. J. Lee, S. J. Lee, K. G. Lee, and B. G. Choi, Nanopillar films with polyoxometalate-doped polyaniline for electrochemical detection of hydrogen peroxide, Analyst, 141, 1319-1324 (2016). https://doi.org/10.1039/C5AN02134K
- V. Ruiz, J. Suárez-Guevara, and P. Gomez-Romero, Hybrid electrodes based on polyoxometalate-carbon materials for electrochemical supercapacitors, Electrochem. Commun., 24, 35-38 (2012). https://doi.org/10.1016/j.elecom.2012.08.003
- Z. Kang, Y. Wang, E. Wang, S. Lian, L. Gao, W. You, C. Hu, and L. Xu, Polyoxometalate nanoparticles: Synthesis, characterization and carbon nanotube modification, Solid State Commun., 129, 559-564 (2004). https://doi.org/10.1016/j.ssc.2003.12.012
- I. Moriguchi, K. Orishikida, Y. Tokuyama, H. Watabe, S. Kagawa, and Y. Teraoka, Photocatalytic property of a decatungstate-containing bilayer system for the conversion of 2-propanol to acetone, Chem. Mater. 13, 2430-2435 (2001). https://doi.org/10.1021/cm010007v
-
X. F. Jia, D. W. Fan, P. Q. Tang, J. C. Hao, and T. B. Liu, Hybrid inorganic/organic quasi-single crystals of wheel-shaped {
$Mo_{154}$ } macro-anions and cationic-surfactants, J. Cluster Sci., 17, 467-478 (2006). https://doi.org/10.1007/s10876-006-0071-z -
D. G. Kurth, P. Lehmann, D. Volkmer, H. Colfen, M. J. Koop, A. Muller, and A. D. Chesne, Surfactant-encapsulated clusters (SECs):
$(DODA)_{20}(NH_4)[H_3Mo_{57}V_6(NO)_6O_{183}(H_2O)_{18}]$ , a case study, Chem. Eur. J., 6, 385-393 (2000). https://doi.org/10.1002/(SICI)1521-3765(20000117)6:2<385::AID-CHEM385>3.0.CO;2-A - I. Ichinose, H. Tagawa, S. Mizuki, Y. Lvov, and T. Kunitake, Formation process of ultrathin multilayer films of molybdenum oxide by alternate adsorption of octamolybdate and linear polycations, Langmuir, 14, 187-192 (1998). https://doi.org/10.1021/la970797g
- S. Q. Liu, D. G. Kurth, B. Bredenkötter, and D. Volkmer, The structure of self-assembled multilayers with polyoxometalate nanoclusters, J. Am. Chem. Soc., 124, 12279-12287 (2002). https://doi.org/10.1021/ja026946l
- X. López, J. J. Carbó, C. Bo, and J. M. Poblet, Structure, properties and reactivity of polyoxometalates: a theoretical perspective, Chem. Soc. Rev., 41, 7537-7571 (2012). https://doi.org/10.1039/c2cs35168d
- H. N. Miras, J. Yan, D. Long, and L. Cronin, Engineering polyoxometalates with emergent properties, Chem. Soc. Rev., 41, 7403-7430 (2012). https://doi.org/10.1039/c2cs35190k
- Y. Song and R. Tsunashima, Recent advances on polyoxometalate-based molecular and composite materials, Chem. Soc. Rev., 41, 7384-7402 (2012). https://doi.org/10.1039/c2cs35143a
- X. Wang, Y. Wang, W. Miao, M. Hu, J. Tang, W. Yu, Z. Hou, P. Zheng, and W. Wang, Langmuir and Langmuir-Blodgett films of hybrid amphiphiles with a polyoxometalate headgroup, Langmuir, 29, 6537-6545 (2013). https://doi.org/10.1021/la401136a
- I. Moriguchi and J. H. Fendler, Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethylammonium) chloride and sodium decatungstate, Chem. Mater., 10, 2205-2211 (1998). https://doi.org/10.1021/cm980127b
-
V. Ball, F. Bernsmann, S. Werner, J. C. Voegel, L. F. Piedra-Garza, and U. Kortz, Polyoxometalates in polyelectrolyte multilayer films: Direct loading of
$[H_7P_8W_{48}O_{184}]^{33-}$ vs. diffusion into the film, Eur. J. Inorg. Chem., 34, 5115-5124 (2009). - B. Wang, R. N. Vyas, and S. Shaik, Preparation parameter development for layer-by-layer assembly of keggin-type polyoxometalates, Langmuir, 23, 11120-11126 (2007). https://doi.org/10.1021/la701789n
- F. Caruso, D. G. Kurth, D. Volkmer, M. J. Koop, and A. Muller, Ultrathin molybdenum polyoxometalate-polyelectrolyte multilayer films, Langmuir, 14, 3462-3465 (1998). https://doi.org/10.1021/la980177v
- H. Yang, T. Song, L. Liu, A. Devadoss, F. Xia, H. Han, H. Park, W. Sigmund, K. Kwon, and U. Paik, Polyaniline/polyoxometalate hybrid nanofibers as cathode for lithium ion batteries with improved lithium storage capacity, J. Phys. Chem. C, 117, 17376-17381 (2013). https://doi.org/10.1021/jp401989j
- W. Chen, L. Huang, J. Hu, T. Li, F. Jia, and Y.-F. Song, Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials, Phys. Chem. Chem. Phys., 16, 19668-19673 (2014). https://doi.org/10.1039/C4CP03202K
- P. Garrigue, M. H. Delville, C. Labrugere, E. Cloutet, P. J. Kulesza, J. P. Morand, and A. Kuhn, Top-down approach for the preparation of colloidal carbon nanoparticles, Chem. Mater., 16, 2984-2986 (2004). https://doi.org/10.1021/cm049685i
- J. P. Tessonnier, A. Goubert-Renaudin, S. Alia, Y. Yan, and M. A. Barteau, Structure, stability, and electronic interactions of polyoxometalates on functionalized graphene sheets, Langmuir, 29, 393-402 (2013). https://doi.org/10.1021/la303408j
- H. Li, S. Pang, X. Feng, K. Mullen, and C. Bubeck, Polyoxometalate assisted photoreduction of graphene oxide and its nanocomposite formation, Chem. Commun., 46, 6243-6245 (2010). https://doi.org/10.1039/c0cc01098g
- Y. Ling, Q. Huang, M. Zhu, D. Feng, X. Li, and Y. Wei, A facile one-step electrochemical fabrication of reduced graphene oxidemultiwall carbon nanotubes-phosphotungstic acid composite for dopamine sensing, J. Electroanal. Chem., 693, 9-15 (2013). https://doi.org/10.1016/j.jelechem.2013.01.001
- M. Yang, B. G. Choi, S. C. Jung, Y.-K. Han, Y. S. Huh, and S. B. Lee, Polyoxometalate-coupled graphene via polymeric ionic liquid linker for supercapacitors, Adv. Funct. Mater., 24, 7301-7309 (2014). https://doi.org/10.1002/adfm.201401798
- Z. W. She, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, and T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science, 335, eaad4998 (2017).
- F. M. Toma, A. Sartorel, M. Lurlo, M. Carraro, P. Parisse, C. Maccato, S. Papino, B. R. Gonzalez, H. Amenitsch, T. D. Pos, L. Casalis, A. Goldoni, M. Marcaccio, G. Scorrano, G. Scoles, F. Paolucci, M. Prato, and M. Bonchio, Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces, Nat. Chem., 2, 826-831 (2010). https://doi.org/10.1038/nchem.761
-
S.-X. Guo, Y. Liu, C.-Y. Lee, A. M. Bond, J. Zhang, Y. V. Geletii, and C. L. Hill, Graphene-supported
$[{Ru_4O_4(OH)_2(H_2O)_4}- ({\gamma}-SiW_{10}O_{36})_2]^{10-}$ for highly efficient electrocatalytic water oxidation, Energy Environ. Sci., 6, 2654-2663 (2013). https://doi.org/10.1039/c3ee41892h - Y. Ding, H. Li, and Y. Hou, Robust polyoxometalate-loaded nickel foam for electrocatalytic oxygen evolution reaction, Mater. Lett., 221, 264-266 (2018). https://doi.org/10.1016/j.matlet.2018.03.133
- J. Wu, L. Liao, W. Yan, Y. Xue, Y. Sun, X. Yan, Y. Chen, and Y. Xie, Polyoxometalates immobilized in ordered mesoporous carbon nitride as highly efficient water oxidation catalysts, ChemSusChem., 5, 1207-1212 (2012). https://doi.org/10.1002/cssc.201100809
- N. Kawasaki, H. Wang, R. Nakanishi, S. Hamanaka, R. Kitaura, H. Shinohara, T. Yokoyama, H. Yoshikawa, and K. Awaga, Nanohybridization of polyoxometalate clusters and single-wall carbon nanotubes: Applications in molecular cluster batteries, Angew. Chem. Int. Ed., 50, 3471-3474 (2011). https://doi.org/10.1002/anie.201007264
- L. Ni, G. Yang, C. Sun, G. Niu, Z. Wu, C. Chen, X. Gong, C. Zhou, G. Zhao, J. Gu, W. Ji, X. Huo, M. Chen, and G. Diao, Self-assembled three-dimensional graphene/polyaniline/polyoxometalate hybrid as cathode for improved rechargeable lithium ion batteries, Mater. Today Energy, 6, 53-64 (2017). https://doi.org/10.1016/j.mtener.2017.08.005
- P. Gomez-Romero, M. Chojak, J. Cuentas-Gallegos, J. A. Asensio, P. J. Kulesza, N. Cansan-Pastor, and M. Lira-Cantu, Hybrid organicinorganic nanocomposite materials for application in solid state electrochemical supercapacitors, Electrochem. Commun., 4, 149-153 (2003).
- J. Suarez-Guevara, V. Ruiz, and P. Gomez-Romero, Hybrid energy storage: high voltage aqueous supercapacitors based on activated carbon-phosphotungstate hybrid materials, J. Mater. Chem. A, 2, 1014-1021 (2014). https://doi.org/10.1039/C3TA14455K
- J. Suarez-Guevara, V. Ruiz, and P. Gomez-Romero, Stable graphene-polyoxometalate nanomaterials for application in hybrid supercapacitors, Phys. Chem. Chem. Phys., 16, 20411-20414 (2016).
- H. Zhang, A. Xie, Y, Shen, L. Qiu, and X. Tian, Layer-by-layer inkjet printing of fabricating reduced graphene-polyoxometalate composite film for chemical sensors, Phys. Chem. Chem. Phys., 14, 12757-12763 (2012). https://doi.org/10.1039/c2cp41561e
- W. Zhang, D. Du, D. Gunaratne, R. Colby, Y. Lin, and J. Laskin, Polyoxometalate-graphene nanocomposite modified electrode for electrocatalytic detection of ascorbic acid, Electroanalysis, 26, 178-183 (2014). https://doi.org/10.1002/elan.201300343
Cited by
- Polyoxometalates‐Based Ionic Liquids (POMs‐ILs) for Electrochemical Applications vol.5, pp.39, 2018, https://doi.org/10.1002/slct.202002976