DOI QR코드

DOI QR Code

Nanohybridization of Polyoxometalate and Nanomaterials for Electrochemical Application

전기 화학 응용을 위한 폴리옥소메탈레이트와 나노물질의 나노하이브리드화

  • Yang, MinHo (Department of Energy Engineering, Dankook University) ;
  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • 양민호 (단국대학교 에너지공학과) ;
  • 최봉길 (강원대학교 화학공학과)
  • Received : 2018.07.04
  • Accepted : 2018.07.24
  • Published : 2018.08.10

Abstract

Polyoxometalates (POMs) have outstanding properties and a great deal of potential for electrochemical applications. As POMs are highly soluble, the implementation of POMs in various functional materials is required to fully use their potential in electrochemical devices. Here, we will review the recently developed immobilization methods to incorporate POMs into conductive nanomaterials, such as nanocarbons and conducting polymers. Various immobilization strategies involve POMs entrapped in conducting polymer matrix and integration of POMs into nanocarbons using a Langmuir-Blodgett technique, a layer-by-layer self-assembly, and an electrochemical in-situ polymerization. In addition, we will review a variety of electrochemical applications including electrocatalysts for water oxidation, lithium-ion batteries, supercapacitors, and electrochemical biosensors.

Polyoxometalates (POMs)는 뛰어난 특성과 전기 화학 응용 분야에 대한 많은 잠재력을 가지고 있다. POM은 매우 잘 녹는 성질 때문에 전기화학 소자에서 POM의 잠재력을 최대한 활용하기 위해서는 다양한 기능성 재료에 POM을 고정화하는 과정이 필수이다. 본 논문에서는 우리는 최근 개발된 고정화 방법인 나노 카본 및 전도성 고분자와 같은 전도성 나노 물질에 POM을 도입하는 기술들에 대해서 논하고자 한다. Langmuir-Blodgett 기술, 층별 자기 조립 및 전기화학 in-situ 중합을 사용하여 전도성 고분자 매트릭스 및 POM을 나노 카본으로 도입할 수 있는 다양한 고정화 전략을 소개한다. 또한 우리는 POM의 응용 분야인 물 산화용 전극 촉매, 리튬 이온 배터리, 슈퍼커패시터 및 전기화학적 바이오 센서 등의 다양한 전기 화학 응용 분야를 다룬다.

Keywords

References

  1. A. Proust, B. Matt, R. Villanneau, G. Guillemot, P. Gouzerh, and G. Izzet, Functionalization and post-functionalization: A step towards polyoxometalate-based materials, Chem. Soc. Rev., 41, 7605-7622 (2012). https://doi.org/10.1039/c2cs35119f
  2. J. J. Walsh, A. M. Bond, R. J. Forster, and T. E. Keyes, Hybrid polyoxometalate materials for photo(electro-) chemical applications, Coord. Chem. Rev., 306, 217-234 (2016). https://doi.org/10.1016/j.ccr.2015.06.016
  3. S. Liu and Z. Tang, Polyoxometalate-based functional nanostructured films: Current progress and future prospects, Nano Today, 5, 267-281 (2010). https://doi.org/10.1016/j.nantod.2010.05.006
  4. T. Ueda, Electrochemistry of polyoxometalates: from fundamental aspects to applications, ChemElectroChem, 5, 823-838 (2018). https://doi.org/10.1002/celc.201701170
  5. Y. Ji, L. Huang, J. Hu, C. Streb, and Y.-F. Song, Polyoxometalatefunctionalized nanocarbon materials for energy conversion, energy storage and sensor systems, Energy Environ. Sci., 8, 776-789 (2015). https://doi.org/10.1039/C4EE03749A
  6. M. Genovese and K. Lian, Polyoxometalate modified inorganicorganic nanocomposite materials for energy storage applications: A review, Curr. Opin. Solid State Mater. Sci., 19, 126-137 (2015). https://doi.org/10.1016/j.cossms.2014.12.002
  7. M. Yang, S. B. Hong, J. H. Yoon, D. S. Kim, S. W. Jeong, D. E. Yoo, T. J. Lee, K. G. Lee, S. J. Lee, and B. G. Choi, Fabrication of flexible, redoxable, and conductive nanopillar arrays with enhanced electrochemical performance, ACS Appl. Mater. Interfaces, 8, 22220-22226 (2016). https://doi.org/10.1021/acsami.6b06579
  8. M. Yang, D. S. Kim, J. H. Yoon, S. B. Hong, S. W. Jeong, D. E. Yoo, T. J. Lee, S. J. Lee, K. G. Lee, and B. G. Choi, Nanopillar films with polyoxometalate-doped polyaniline for electrochemical detection of hydrogen peroxide, Analyst, 141, 1319-1324 (2016). https://doi.org/10.1039/C5AN02134K
  9. V. Ruiz, J. Suárez-Guevara, and P. Gomez-Romero, Hybrid electrodes based on polyoxometalate-carbon materials for electrochemical supercapacitors, Electrochem. Commun., 24, 35-38 (2012). https://doi.org/10.1016/j.elecom.2012.08.003
  10. Z. Kang, Y. Wang, E. Wang, S. Lian, L. Gao, W. You, C. Hu, and L. Xu, Polyoxometalate nanoparticles: Synthesis, characterization and carbon nanotube modification, Solid State Commun., 129, 559-564 (2004). https://doi.org/10.1016/j.ssc.2003.12.012
  11. I. Moriguchi, K. Orishikida, Y. Tokuyama, H. Watabe, S. Kagawa, and Y. Teraoka, Photocatalytic property of a decatungstate-containing bilayer system for the conversion of 2-propanol to acetone, Chem. Mater. 13, 2430-2435 (2001). https://doi.org/10.1021/cm010007v
  12. X. F. Jia, D. W. Fan, P. Q. Tang, J. C. Hao, and T. B. Liu, Hybrid inorganic/organic quasi-single crystals of wheel-shaped {$Mo_{154}$} macro-anions and cationic-surfactants, J. Cluster Sci., 17, 467-478 (2006). https://doi.org/10.1007/s10876-006-0071-z
  13. D. G. Kurth, P. Lehmann, D. Volkmer, H. Colfen, M. J. Koop, A. Muller, and A. D. Chesne, Surfactant-encapsulated clusters (SECs): $(DODA)_{20}(NH_4)[H_3Mo_{57}V_6(NO)_6O_{183}(H_2O)_{18}]$, a case study, Chem. Eur. J., 6, 385-393 (2000). https://doi.org/10.1002/(SICI)1521-3765(20000117)6:2<385::AID-CHEM385>3.0.CO;2-A
  14. I. Ichinose, H. Tagawa, S. Mizuki, Y. Lvov, and T. Kunitake, Formation process of ultrathin multilayer films of molybdenum oxide by alternate adsorption of octamolybdate and linear polycations, Langmuir, 14, 187-192 (1998). https://doi.org/10.1021/la970797g
  15. S. Q. Liu, D. G. Kurth, B. Bredenkötter, and D. Volkmer, The structure of self-assembled multilayers with polyoxometalate nanoclusters, J. Am. Chem. Soc., 124, 12279-12287 (2002). https://doi.org/10.1021/ja026946l
  16. X. López, J. J. Carbó, C. Bo, and J. M. Poblet, Structure, properties and reactivity of polyoxometalates: a theoretical perspective, Chem. Soc. Rev., 41, 7537-7571 (2012). https://doi.org/10.1039/c2cs35168d
  17. H. N. Miras, J. Yan, D. Long, and L. Cronin, Engineering polyoxometalates with emergent properties, Chem. Soc. Rev., 41, 7403-7430 (2012). https://doi.org/10.1039/c2cs35190k
  18. Y. Song and R. Tsunashima, Recent advances on polyoxometalate-based molecular and composite materials, Chem. Soc. Rev., 41, 7384-7402 (2012). https://doi.org/10.1039/c2cs35143a
  19. X. Wang, Y. Wang, W. Miao, M. Hu, J. Tang, W. Yu, Z. Hou, P. Zheng, and W. Wang, Langmuir and Langmuir-Blodgett films of hybrid amphiphiles with a polyoxometalate headgroup, Langmuir, 29, 6537-6545 (2013). https://doi.org/10.1021/la401136a
  20. I. Moriguchi and J. H. Fendler, Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethylammonium) chloride and sodium decatungstate, Chem. Mater., 10, 2205-2211 (1998). https://doi.org/10.1021/cm980127b
  21. V. Ball, F. Bernsmann, S. Werner, J. C. Voegel, L. F. Piedra-Garza, and U. Kortz, Polyoxometalates in polyelectrolyte multilayer films: Direct loading of $[H_7P_8W_{48}O_{184}]^{33-}$ vs. diffusion into the film, Eur. J. Inorg. Chem., 34, 5115-5124 (2009).
  22. B. Wang, R. N. Vyas, and S. Shaik, Preparation parameter development for layer-by-layer assembly of keggin-type polyoxometalates, Langmuir, 23, 11120-11126 (2007). https://doi.org/10.1021/la701789n
  23. F. Caruso, D. G. Kurth, D. Volkmer, M. J. Koop, and A. Muller, Ultrathin molybdenum polyoxometalate-polyelectrolyte multilayer films, Langmuir, 14, 3462-3465 (1998). https://doi.org/10.1021/la980177v
  24. H. Yang, T. Song, L. Liu, A. Devadoss, F. Xia, H. Han, H. Park, W. Sigmund, K. Kwon, and U. Paik, Polyaniline/polyoxometalate hybrid nanofibers as cathode for lithium ion batteries with improved lithium storage capacity, J. Phys. Chem. C, 117, 17376-17381 (2013). https://doi.org/10.1021/jp401989j
  25. W. Chen, L. Huang, J. Hu, T. Li, F. Jia, and Y.-F. Song, Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials, Phys. Chem. Chem. Phys., 16, 19668-19673 (2014). https://doi.org/10.1039/C4CP03202K
  26. P. Garrigue, M. H. Delville, C. Labrugere, E. Cloutet, P. J. Kulesza, J. P. Morand, and A. Kuhn, Top-down approach for the preparation of colloidal carbon nanoparticles, Chem. Mater., 16, 2984-2986 (2004). https://doi.org/10.1021/cm049685i
  27. J. P. Tessonnier, A. Goubert-Renaudin, S. Alia, Y. Yan, and M. A. Barteau, Structure, stability, and electronic interactions of polyoxometalates on functionalized graphene sheets, Langmuir, 29, 393-402 (2013). https://doi.org/10.1021/la303408j
  28. H. Li, S. Pang, X. Feng, K. Mullen, and C. Bubeck, Polyoxometalate assisted photoreduction of graphene oxide and its nanocomposite formation, Chem. Commun., 46, 6243-6245 (2010). https://doi.org/10.1039/c0cc01098g
  29. Y. Ling, Q. Huang, M. Zhu, D. Feng, X. Li, and Y. Wei, A facile one-step electrochemical fabrication of reduced graphene oxidemultiwall carbon nanotubes-phosphotungstic acid composite for dopamine sensing, J. Electroanal. Chem., 693, 9-15 (2013). https://doi.org/10.1016/j.jelechem.2013.01.001
  30. M. Yang, B. G. Choi, S. C. Jung, Y.-K. Han, Y. S. Huh, and S. B. Lee, Polyoxometalate-coupled graphene via polymeric ionic liquid linker for supercapacitors, Adv. Funct. Mater., 24, 7301-7309 (2014). https://doi.org/10.1002/adfm.201401798
  31. Z. W. She, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, and T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science, 335, eaad4998 (2017).
  32. F. M. Toma, A. Sartorel, M. Lurlo, M. Carraro, P. Parisse, C. Maccato, S. Papino, B. R. Gonzalez, H. Amenitsch, T. D. Pos, L. Casalis, A. Goldoni, M. Marcaccio, G. Scorrano, G. Scoles, F. Paolucci, M. Prato, and M. Bonchio, Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces, Nat. Chem., 2, 826-831 (2010). https://doi.org/10.1038/nchem.761
  33. S.-X. Guo, Y. Liu, C.-Y. Lee, A. M. Bond, J. Zhang, Y. V. Geletii, and C. L. Hill, Graphene-supported $[{Ru_4O_4(OH)_2(H_2O)_4}- ({\gamma}-SiW_{10}O_{36})_2]^{10-}$ for highly efficient electrocatalytic water oxidation, Energy Environ. Sci., 6, 2654-2663 (2013). https://doi.org/10.1039/c3ee41892h
  34. Y. Ding, H. Li, and Y. Hou, Robust polyoxometalate-loaded nickel foam for electrocatalytic oxygen evolution reaction, Mater. Lett., 221, 264-266 (2018). https://doi.org/10.1016/j.matlet.2018.03.133
  35. J. Wu, L. Liao, W. Yan, Y. Xue, Y. Sun, X. Yan, Y. Chen, and Y. Xie, Polyoxometalates immobilized in ordered mesoporous carbon nitride as highly efficient water oxidation catalysts, ChemSusChem., 5, 1207-1212 (2012). https://doi.org/10.1002/cssc.201100809
  36. N. Kawasaki, H. Wang, R. Nakanishi, S. Hamanaka, R. Kitaura, H. Shinohara, T. Yokoyama, H. Yoshikawa, and K. Awaga, Nanohybridization of polyoxometalate clusters and single-wall carbon nanotubes: Applications in molecular cluster batteries, Angew. Chem. Int. Ed., 50, 3471-3474 (2011). https://doi.org/10.1002/anie.201007264
  37. L. Ni, G. Yang, C. Sun, G. Niu, Z. Wu, C. Chen, X. Gong, C. Zhou, G. Zhao, J. Gu, W. Ji, X. Huo, M. Chen, and G. Diao, Self-assembled three-dimensional graphene/polyaniline/polyoxometalate hybrid as cathode for improved rechargeable lithium ion batteries, Mater. Today Energy, 6, 53-64 (2017). https://doi.org/10.1016/j.mtener.2017.08.005
  38. P. Gomez-Romero, M. Chojak, J. Cuentas-Gallegos, J. A. Asensio, P. J. Kulesza, N. Cansan-Pastor, and M. Lira-Cantu, Hybrid organicinorganic nanocomposite materials for application in solid state electrochemical supercapacitors, Electrochem. Commun., 4, 149-153 (2003).
  39. J. Suarez-Guevara, V. Ruiz, and P. Gomez-Romero, Hybrid energy storage: high voltage aqueous supercapacitors based on activated carbon-phosphotungstate hybrid materials, J. Mater. Chem. A, 2, 1014-1021 (2014). https://doi.org/10.1039/C3TA14455K
  40. J. Suarez-Guevara, V. Ruiz, and P. Gomez-Romero, Stable graphene-polyoxometalate nanomaterials for application in hybrid supercapacitors, Phys. Chem. Chem. Phys., 16, 20411-20414 (2016).
  41. H. Zhang, A. Xie, Y, Shen, L. Qiu, and X. Tian, Layer-by-layer inkjet printing of fabricating reduced graphene-polyoxometalate composite film for chemical sensors, Phys. Chem. Chem. Phys., 14, 12757-12763 (2012). https://doi.org/10.1039/c2cp41561e
  42. W. Zhang, D. Du, D. Gunaratne, R. Colby, Y. Lin, and J. Laskin, Polyoxometalate-graphene nanocomposite modified electrode for electrocatalytic detection of ascorbic acid, Electroanalysis, 26, 178-183 (2014). https://doi.org/10.1002/elan.201300343

Cited by

  1. Polyoxometalates‐Based Ionic Liquids (POMs‐ILs) for Electrochemical Applications vol.5, pp.39, 2018, https://doi.org/10.1002/slct.202002976