• Title/Summary/Keyword: nanocarbon

Search Result 23, Processing Time 0.026 seconds

Relative Photonic Properties of Fe/TiO2-Nanocarbon Catalysts for Degradation of MB Solution under Visible Light

  • Oh, Won-Chun;Zhang, Feng-Jun;Meng, Ze-Da;Zhang, Kan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1128-1134
    • /
    • 2010
  • Nanocarbon supported Fe/$TiO_2$ composite catalysts were prepared using CNTs (carbon nanotubes) and $C_{60}$ (fullerene) as nanocarbon sources by a modified sol-gel method. The Fe/$TiO_2$-nanocarbon composites were characterized by the BET surface area, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and UV-vis spectra. In comparison with non-nanocarbon doped Fe/$TiO_2$ composites, the nanocarbon supported Fe/$TiO_2$ composites had higher absorption ability with a larger specific surface area, and showed higher photocatalytic activity during the degradation of methylene blue (MB) under visible light. The reasons for the obvious increase of photocatalytic activity indicated that the photoactivity not only benefits from nanocarbon introduced, but also relates to the cooperative effect of the Fe as a dopant.

Nanocarbon Polymer Composites (나노탄소 고분자 복합재료)

  • Choe, Chul Rim
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.147-154
    • /
    • 2013
  • Nanocarbons such as carbon nanotubes (CNT) and graphene are considered to be ideal fillers for polymer composites, because of their outstanding mechanical properties and high length-to-diameter ratio. There has been much effort to realize the implementation of their full potential, but a large number of unsolved problems still must be challenged, for example, effective processing for fabrication. This review deals with the progress that has already been made in the area of nanocarbon polymer composites using CNT and graphene. Mechanical reinforcement of various nanocarbon polymer composites is analyzed and compared, and future perspectives in research and development that need to be done are discussed.

Solution Plasma Synthesis of BNC Nanocarbon for Oxygen Reduction Reaction

  • Lee, Seung-Hyo
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.5
    • /
    • pp.332-336
    • /
    • 2018
  • Alkaline oxygen electrocatalysis, targeting anion exchange membrane alkaline-based metal-air batteries has become a subject of intensive investigation because of its advantages compared to its acidic counterparts in reaction kinetics and materials stability. However, significant breakthroughs in the design and synthesis of efficient oxygen reduction catalysts from earth-abundant elements instead of precious metals in alkaline media still remain in high demand. One of the most inexpensive alternatives is carbonaceous materials, which have attracted extensive attention either as catalyst supports or as metal-free cathode catalysts for oxygen reduction. Also, carbon composite materials have been recognized as the most promising because of their reasonable balance between catalytic activity, durability, and cost. In particular, heteroatom (e.g., N, B, S or P) doping on carbon materials can tune the electronic and geometric properties of carbon, providing more active sites and enhancing the interaction between carbon structure and active sites. Here, we focused on boron and nitrogen doped nanocarbon composit (BNC nanocarbon) catalysts synthesized by a solution plasma process using the simple precursor of pyridine and boric acid without further annealing process. Additionally, guidance for rational design and synthesis of alkaline ORR catalysts with improved activity is also presented.

Ballistic impact response of Kevlar Composites with filled epoxy matrix

  • Pekbey, Yeliz;Aslantas, Kubilay;Yumak, Nihal
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.191-200
    • /
    • 2017
  • Impact resistance and weight are important features for ballistic materials. Kevlar fibres are the most widely reinforcement for military and civil systems due to its excellent impact resistance and high strength-to-weight ratio. Kevlar fibres or spectra fiber composites are used for designing personal body armour to avoid perforation. In this study, the ballistic impact behaviour of Kevlar/filled epoxy matrix is investigated. Three different fillers, nanoclay, nanocalcite and nanocarbon, were used in order to increase the ballistic impact performance of Kevlar-epoxy composite at lower weight. The filler, nanoclay and nanocalcite, content employed was 1 wt.% and 2 of the epoxy resin-hardener mixture while the nanocarbon were dispersed into the epoxy system in a 0.5%, 1% and 2% ratio in weight relating to the epoxy matrix. Specimens were produced by a hand lay-up process. The results obtained from ballistic impact experiments were discussed in terms of damage and perforation. The experimental tests revealed a number of damage mechanisms for composite laminated plates. In the ballistic impact test, it was observed whether the target was perforated completely penetrated at the back or not. The presence of small amounts of nanoclay and nanocalcite dispersed into the epoxy system improved the impact properties of the Kevlar/epoxy composites. The laminates manufactured with epoxy resin filled by 1 wt.% of nanoclay and 2 wt% nanocalcite showed the best performance in terms of ballistic performance. The addition of nanocarbon reduced ballistic performance of Kevlar-epoxy composites when compared the results obtained for laminates with 0% nanoparticles concentration.

Nanocarbon synthesis using plant oil and differential responses to various parameters optimized using the Taguchi method

  • Tripathi, Suman;Sharon, Maheshwar;Maldar, N.N.;Shukla, Jayashri;Sharon, Madhuri
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.210-217
    • /
    • 2013
  • The synthesis of carbon nanomaterials (CNMs) by a chemical vapor deposition method using three different plant oils as precursors is presented. Because there are four parameters involved in the synthesis of CNM (i.e., the precursor, reaction temperature of the furnace, catalysts, and the carrier gas), each having three variables, it was decided to use the Taguchi optimization method with the 'the larger the better' concept. The best parameter regarding the yield of carbon varied for each type of precursor oil. It was a temperature of $900^{\circ}C$ + Ni as a catalyst for neem oil; $700^{\circ}C$ + Co for karanja oil and $500^{\circ}C$ + Zn as a catalyst for castor oil. The morphology of the nanocarbon produced was also impacted by different parameters. Neem oil and castor oil produced carbon nanotube (CNT) at $900^{\circ}C$; at lower temperatures, sphere-like structures developed. In contrast, karanja oil produced CNTs at all the assessed temperatures. X-ray diffraction and Raman diffraction analyses confirmed that the nanocarbon (both carbon nano beads and CNTs) produced were graphitic in nature.

Effect of Graphite Electrode Geometry and Combination on Nanocarbon Synthesis using Underwater Discharge Plasma (수중 방전 플라즈마를 이용한 탄소나노소재 합성 시 흑연전극의 형상과 조합의 영향)

  • Jo, Sung-Il;Lee, Byeong-Joo;Jeong, Goo-Hwan
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.2
    • /
    • pp.108-113
    • /
    • 2017
  • We investigated the effect of graphite electrode geometry and combination on nanocarbon material synthesis using underwater discharge plasma(UDP). The UDP system consists of two graphite electrodes and beaker filled with de-ionized water. A high voltage of 15 kV with a frequency of 25 kHz is applied to produce UDP using an alternating-current power source. The UDP system with conical electrodes produced the largest amount of products due to the concentration of electrical fields between electrodes. In addition, hollow-shaped stationary electrode and conical-shaped moving electrode stores discharge-induced bubbles and maintains longer reaction time. We found from Raman spectroscopy and electron microscopy that high quality carbon nanomaterials including carbon nanotubes are synthesized by the UDP system.

Tailoring Surface Properties of Polyimides by Laser Direct Patterning (레이저 직접 패터닝에 의한 폴리이미드의 표면 특성 제어)

  • Yun Chan Hwang;Jeong Min Sohn;Jae Hui Park;Ki-Ho Nam
    • Textile Coloration and Finishing
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2023
  • In this study, a comprehensive investigation was conducted on the morphological and property changes of laser-induced nanocarbon (LINC) as a function of laser process parameters. LINC was formed on the surfaces of polyimide films with different backbone structures under various process conditions, including laser power, scan speed, and resolution. Three different forms of LINC electrodes (i.e., continuous 3D porous graphene, wooly nanocarbon fibers, line cut) were formed depending on the laser power and scan speed. Furthermore, heteroatom doping induced from the chemical structure of the polyimide during laser patterning was found to be effective in modifying the electrical properties of LINC electrodes. The LINC surfaces exhibited different microstructures depending on the laser beam resolution under constant laser power and scan speed, allowing for controllable surface wettability. The correlation between the chemical structure of the polymer substrate, laser process parameters, and carbonized surface properties in this study is expected to be utilized as fundamental understanding for the manufacturing of next-generation carbon-based electronic devices.

Electrical Conductivity of Chemically Reduced Graphene Powders under Compression

  • Rani, Adila;Nam, Seung-Woong;Oh, Kyoung-Ah;Park, Min
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.90-95
    • /
    • 2010
  • Carbon materials such as graphite and graphene exhibit high electrical conductivity. We examined the electrical conductivity of synthetic and natural graphene powders after the chemical reduction of synthetic and natural graphite oxide from synthetic and natural graphite. The trend of electrical conductivity of both graphene (synthetic and natural) was compared with different graphite materials (synthetic, natural, and expanded) and carbon nanotubes (CNTs) under compression from 0.3 to 60 MPa. We found that synthetic graphene showed a marked increment in electrical conductivity compared to natural graphene. Interestingly, the total increment in electrical conductivity was greater for denser graphite; however, an opposite behavior was observed in nanocarbon materials such as graphene and CNTs, probably due to the differing layer arrangement of nanocarbon materials.