DOI QR코드

DOI QR Code

Electrical Conductivity of Chemically Reduced Graphene Powders under Compression

  • Rani, Adila (Polymer Hybrid Center, Korea Institute of Science and Technology) ;
  • Nam, Seung-Woong (Polymer Hybrid Center, Korea Institute of Science and Technology) ;
  • Oh, Kyoung-Ah (Polymer Hybrid Center, Korea Institute of Science and Technology) ;
  • Park, Min (Polymer Hybrid Center, Korea Institute of Science and Technology)
  • Received : 2010.04.20
  • Accepted : 2010.05.28
  • Published : 2010.06.30

Abstract

Carbon materials such as graphite and graphene exhibit high electrical conductivity. We examined the electrical conductivity of synthetic and natural graphene powders after the chemical reduction of synthetic and natural graphite oxide from synthetic and natural graphite. The trend of electrical conductivity of both graphene (synthetic and natural) was compared with different graphite materials (synthetic, natural, and expanded) and carbon nanotubes (CNTs) under compression from 0.3 to 60 MPa. We found that synthetic graphene showed a marked increment in electrical conductivity compared to natural graphene. Interestingly, the total increment in electrical conductivity was greater for denser graphite; however, an opposite behavior was observed in nanocarbon materials such as graphene and CNTs, probably due to the differing layer arrangement of nanocarbon materials.

Keywords

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. https://doi.org/10.1126/science.1102896
  2. Avouris, P.; Chen, Z.; Perebeinos, V. Nature Nanotech. 2007, 2, 605. https://doi.org/10.1038/nnano.2007.300
  3. Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B. Nano Letters. 2007, 7, 3394. https://doi.org/10.1021/nl0717715
  4. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282. https://doi.org/10.1038/nature04969
  5. Liang, X.; Fu, Z.; Chou, S. Y. Nano Letters. 2007, 7, 3840. https://doi.org/10.1021/nl072566s
  6. Wang, X.; Zhi, L. J.; Tsao, N.; Tomovic, Z.; Li, J. L.; Mullen, K. Angew. Chem. Int. Ed. 2008, 47, 2990. https://doi.org/10.1002/anie.200704909
  7. Geim, A. K.; Novoselov, K. S. Nature Mater. 2007, 6, 183. https://doi.org/10.1038/nmat1849
  8. Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Summchen, L.; Roy, C. Carbon 2001, 39, 1147. https://doi.org/10.1016/S0008-6223(00)00239-6
  9. Probst, N.; Grivei, E. Carbon 2002, 40, 201. https://doi.org/10.1016/S0008-6223(01)00174-9
  10. Celzard, A.; Mareche, J. F.; Payot, F.; Furdin, G. Carbon 2002, 40, 2801. https://doi.org/10.1016/S0008-6223(02)00196-3
  11. Sanchez-Gonzalez, J.; Macias-Garcia, A.; Alexandre- Franco, M. F.; Gomez-Serrano, V. Carbon 2005, 43, 741. https://doi.org/10.1016/j.carbon.2004.10.045
  12. Deprez, N.; McLachlan, D. S. J. Phys. D: Appl. Phys. 1988, 21, 101. https://doi.org/10.1088/0022-3727/21/1/015
  13. William, S. H.; Richard, E. O. J. Am. Chem. Soc. 1958, 80, 1339. https://doi.org/10.1021/ja01539a017
  14. Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem. Mater. 1999, 11, 771. https://doi.org/10.1021/cm981085u
  15. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558. https://doi.org/10.1016/j.carbon.2007.02.034
  16. Mathur, R. B.; Dhakate, S. R.; Gupta, D. K.; Dhami, T. L.; Aggarwal, R. K. J. Mater. Process. Technol. 2008, 203, 184. https://doi.org/10.1016/j.jmatprotec.2007.10.044

Cited by

  1. Preparation and Characterization of Reduced Graphene Nanosheets via Pre-exfoliation of Graphite Flakes vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.209
  2. Workfunction-Tunable, N-Doped Reduced Graphene Transparent Electrodes for High-Performance Polymer Light-Emitting Diodes vol.6, pp.1, 2012, https://doi.org/10.1021/nn203176u
  3. Enhanced Capacitance of Thermally Reduced Hexagonal Graphene Oxide for High Performance Supercapacitor vol.23, pp.7, 2015, https://doi.org/10.1080/1536383X.2014.943889
  4. Photo-Response of Functionalized Self-Assembled Graphene Oxide on Zinc Oxide Heterostructure to UV Illumination vol.11, pp.1, 2016, https://doi.org/10.1186/s11671-015-1221-8
  5. Rate-capability response of graphite anode materials in advanced energy storage systems: a structural comparison vol.17, pp.1, 2016, https://doi.org/10.5714/CL.2016.17.1.039
  6. Laser-Plasma Driven Synthesis of Carbon-Based Nanomaterials vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-12243-4
  7. Development of Transparent Electrodes Using Graphene Nano-Ink and Post-Consumer PET Bottles for Electrochromic Application vol.744, pp.1662-9795, 2017, https://doi.org/10.4028/www.scientific.net/KEM.744.463
  8. Dielectric Characteristics and Microwave Absorption of Graphene Composite Materials vol.9, pp.10, 2016, https://doi.org/10.3390/ma9100825
  9. Pressure Sensitive Sensors Based on Carbon Nanotubes, Graphene, and Its Composites vol.2018, pp.1687-4129, 2018, https://doi.org/10.1155/2018/9592610
  10. Effects of Synthesis Method on Electrical Properties of Graphene vol.358, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/358/1/012051
  11. Theoretical studies of optoelectronic, magnetization and heat transport properties of conductive metal adatoms adsorbed on edge chlorinated nanographenes vol.8, pp.32, 2018, https://doi.org/10.1039/C8RA02032A
  12. Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-017-02269-7