• Title/Summary/Keyword: Electrochemical Impedance

Search Result 896, Processing Time 0.024 seconds

Properties of Capacity on Carbon Electrode in EC:MA Electrolytes - I. Effect of Mixing Ratio on the Electrochemical Properties - (EC:MA 혼합전해질에서 카본 전극의 용량 특성 - I. 전기화학적 특성에 대한 혼합비의 영향 -)

  • Park, Dong-Won;Kim, Woo-Seong;Son, Dong-Un;Kim, Sung-Phil;Choi, Yong-Kook
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.183-187
    • /
    • 2006
  • The choice of solvents for electrolytes solutions is very important to improve the characteristics of charge/discharge in the Li-ion battery system. Such solvent systems have been widely investigated as electrolytes for Li-ion batteries. In this paper, the electrochemical properties of the solid electrolyte interphase film formed on carbon anode surface and the solvent decomposition voltage in 1 M LiPF6/EC:MA(x:y) electrolyte solutions prepared from the various mixing volume ratios are investigated by chronopotentiometry, cyclic voltammetry, and impedance spectroscopy. As a result, the solvent decomposition voltages are varied with the ionic conductivity of the electrolyte. Electrochemical properties of the passivation film were different, which are dependent on the mixture ratio of the solvents. Therefore, the most appropriate mixing ratio of EC and MA as a solvent in 1 M $LiPF_6/(EC+MA)$ system for Li-ion battery is approximately 1:3 (EC:MA, volume ratio).

Template Synthesis of Ordered-Mesoporous Tin Oxide for Lithium-ion Battery Anode Materials (주형 합성법을 통해 합성된 다공성 주석 산화물을 적용한 리튬이차전지용 음극재 연구)

  • Seo, Gyeongju;Choi, Jaecheol;Lee, Yong Min;Ko, Chang Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.86-93
    • /
    • 2014
  • Mesoporous tin oxide (meso-$SnO_2$) with 5 nm mesopore and well-aligned $SnO_2$ nanowire-bundles with 5~7 nm diameters were prepared by template synthesis method. In addition to meso-$SnO_2$, meso-$SnO_2$/$SiO_2$, which has almost the same structure as meso-$SnO_2$ including $SiO_2$ used as the template were prepared by the modification of template synthesis. X-ray diffraction, N2 adsorption-desorption isotherms, transmission electron microscopy observed structures of meso-$SnO_2$ and meso-$SnO_2$/$SiO_2$. Although the meso-$SnO_2$/$SiO_2$ showed some positive evidences to suppress the volume change of meso-$SnO_2$ through cyclic voltammogram, electrochemical impedance spectroscopy, and voltage profiles during cycling, its cycle life was not improved highly to address modified structural effects. Thus, further study might be done to control the nanostructure of meso-$SnO_2$/$SiO_2$ for enhanced cycle performance.

Nitrided LATP Solid Electrolyte for Enhanced Chemical Stability in Alkaline Media (질화 처리된 LATP 고체전해질의 알칼라인 용액내에서의 내화학특성 개선 연구)

  • Seong, Ji Young;Lee, Jong-Won;Im, Won Bin;Kim, Sung-Soo;Jung, Kyu-Nam
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.45-50
    • /
    • 2015
  • In the present work, to increase the chemical stability of the lithium-ion-conducting ceramic electrolyte ($Li_{1+x+y}Al_xTi_{2-x}Si_yP_{3-y}O_{12}$, LATP) in the strong alkaline solution, the surface of LATP was modified by the nitridation process. The surface and structural properties of nitride LATP solid electrolyte were characterized by X-ray diffraction, X-ray photoelectron spectrometer and scanning electron microscopy and ac-impedance spectroscopy, which were correlated to the chemical stability and electrochemical performance of LATP. The nitrided LATP immersed in the alkaline solution for 30 days exhibits the enhanced chemical stability than the pristine LATP. Moreover, a rechargeable hybrid Li-air battery constructed with the nitrided LATP solid electrolyte shows considerably reduced discharge-charge voltage gaps (enhanced the round-trip efficiency) in comparison to the cell constructed with pristine LATP, which indicate that the surface nitridation process can be the efficient way to improve the chemical stability of solid electrolyte in alkaline media.

Preparation and Performance Evaluation of Zinc Phosphate-Coated Mica Anticorrrosive Pigment (운모상에 인산아연이 도포된 방청안료의 제조 및 성능평가)

  • Lee, Yu Jin;Park, Seong Soo;Hong, Seong Soo;Lee, Seung Ho;Kim, Dae Sung;Lee, Gun Dae
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.257-263
    • /
    • 2013
  • The zinc phosphate-coated mica (ZP/mica) pigments were prepared using phosphoric acid, zinc nitrate and mica as starting materials, and used as anticorrosive pigments. The scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were used to observe the morphology and crystal structure of prepared pigments. The prepared pigments were incorporated into an epoxy binder to prepare coating and the corrosion inhibition performance of the pigments was evaluated using electrochemical impedance spectroscopy (EIS). It was found that the anticorrosive performance of the ZP/mica pigment prepared at $70^{\circ}C$ was the better than that prepared at $20^{\circ}C$. The formation of ZnO, in addition to $Zn_3(PO_4)_2{\cdot}2H_2O$, was observed on ZP/mica pigment prepared at $70^{\circ}C$. The excellent anticorrosive performance of ZP/mica pigment could be ascribed to the synergistic effect with electrochemical anticorrosive mechanism from zinc compounds on mica and barrier anticorrosive mechanism from lamellar mica.

Determination of the Langmuir and Temkin Adsorption Isotherms of H for the Cathodic H2 Evolution Reaction at a Pt/KOH Solution Interface Using the Phase-Shift Method

  • Chun Jang-H.;Jeon Sang-K.;Chun Jin-Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • The phase-shift method for determining the Langmuir, Frumkin, and Temkin adsorption isotherms ($\theta_H\;vs.\;E$) of H for the cathodic $H_2$ evolution reaction (HER) at a Pt/0.1 M KOH solution interface has been proposed and verified using cyclic voltammetric, differential pulse voltammetric, and electrochemical impedance techniques. At the Pt/0.1 M KOH solution interface, the Langmuir and Temkin adsorption isotherms ($\theta_H\;vs.\;E$), the equilibrium constants ($K_H=2.9X10^{-4}mol^{-1}$ for the Langmuir and $K_H=2.9X10^{-3}\exp(-4.6\theta_H)mol^{-1}$ for the Temkin adsorption isotherm), the interaction parameters (g=0 far the Langmuir and g=4.6 for the Temkin adsorption isotherm), the rate of change of the standard free energy of $\theta_H\;with\;\theta_H$ (r=11.4 kJ $mol^{-1}$ for g=4.6), and the standard free energies (${\Delta}G_{ads}^{\circ}=20.2kJ\;mol^{-1}$ for $k_H=2.9\times10^{-4}mol^{-1}$, i.e., the Langmuir adsorption isotherm, and $16.7<{\Delta}G_\theta^{\circ}<23.6kJ\;mol^{-1}$ for $K_H=2.9\times10^{-3}\exp(-4.6\theta_H)mol^{-1}$ and $0.2<\theta_H<0.8$, i.e., the Temkin adsorption isotherm) of H for the cathodic HER are determined using the phase-shift method. At intermediate values of $\theta_H$, i.e., $0.2<\theta_H<0.8$, the Temkin adsorption isotherm ($\theta_H\;vs.\;E$) corresponding to the Langmuir adsorption isotherm ($\theta_H\;vs.\;E$), and vice versa, is readily determined using the constant conversion factors. The phase-shift method and constant conversion factors are useful and effective for determining the Langmuir, Frumkin, and Temkin adsorption isotherms of intermediates for sequential reactions and related electrode kinetic and thermodynamic data at electrode catalyst interfaces.

Determination of Adsorption Isotherms of Hydrogen on Zirconium in Sulfuric Acid Solution Using the Phase-Shift Method and Correlation Constants

  • Chun, Jang-H.;Chun, Jin-Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2009
  • The phase-shift method and correlation constants, i.e., the unique electrochemical impedance spectroscopy (EIS) techniques for studying the linear relationship between the behavior ($-{\varphi}$ vs. E) of the phase shift ($90^{\circ}{\geq}-{\varphi}{\geq}0^{\circ}$) for the optimum intermediate frequency and that ($\theta$ vs. E) of the fractional surface coverage ($0{\leq}{\theta}{\leq}1$), have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at noble metal (alloy)/aqueous solution interfaces. At a Zr/0.2 M ${H_2}{SO_4}$ aqueous solution interface, the Frumkin and Temkin adsorption isotherms ($\theta$ vs. E), equilibrium constants (K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ for the Frumkin and K = $1.401{\times}10^{-16}\exp(8.1{\theta})mol^{-1}$ for the Temkin adsorption isotherm), interaction parameters (g = 3.5 for the Frumkin and g = 8.1 for the Temkin adsorption isotherm), rates of change of the standard free energy (r = $8.7\;kJ\;mol^{-1}$ for g = 3.5 and r = $20\;kJ\;mol^{-1}$ for g = 8.1) of H with $\theta$, and standard free energies ($96.13{\leq}{\Delta}G^0_{\theta}{\leq}104.8\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ and $0{\leq}{\theta}{\leq}1$ and ($94.44<{\Delta}G^0_{\theta}<106.5\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-16}\exp(-8.1{\theta})mol^{-1}$ and $0.2<{\theta}<0.8$) of H are determined using the phase-shift method and correlation constants. At 0.2 < $\theta$ < 0.8, the Temkin adsorption isotherm correlating with the Frumkin adsorption isotherm, and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are probably the most accurate, useful, and effective ways to determine the adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at highly corrosion-resistant metal/aqueous solution interfaces.

Separator Effect on the Cell Failure of Lithium Secondary Battery using Lithium Metal Electrode (리튬금속 전극을 이용한 리튬이차전지의 내부단락에 대한 분리막의 영향)

  • Kim, Ju-Seok;Bae, Sang-Ho;Hwang, Min-Ji;Heo, Min-Yeong;Doh, Chil-Hoon
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.171-175
    • /
    • 2011
  • Lithium secondary batteries using lithium metal count electrode are easy to use and to analyze the specific characteristics of working electrode. Nevertheless, during the charge operation internal electrical short circuit could be caused by the dendritic growth of lithium. The cell failure by the short circuit depends on the condition of separator such as constitutive material and thickness. To prevent the cell failure caused by the dendritic growth of lithium, the electrochemical properties of the cell of lithium metal count electrode were evaluated for four different kinds of separator. Among the tested separators, GMF (glass micro-fiber filter, $300{\mu}m$) was the most promising one because it could effectively prevent the cell failure during the charge. The cell using GMF separator had relatively low impedance. Generally the cell using thicker separator than $50{\mu}m$ could effectively avoid the cell failure by internal short circuit and had the good cycleability. The highest rate capability by the signature method was acquired in the case of GMF separator.

Characterization and Performance of MEA for Direct Methanol Fuel Cell Prepared with PFA Grafted Polystyrene Membranes via Radiation-Grafting Method (방사선 그라프트 PFA-폴리스티렌 멤브레인으로 제조한 직접 메탄올 연료전지용 MEA의 성능과 특성)

  • Kang, Se-Goo;Peck, Dong-Hyun;Kim, Sang-Kyung;Lim, Seong-Yop;Jung, Doo-Hwan;Park, Young-Chul;Shin, Jun-Hwa;Kang, Phil-Hyun;Nho, Young-Chang;Shul, Yong-Gun
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.173-180
    • /
    • 2009
  • In order to develop a novel polymer electrolyte membrane for direct methanol fuel cell (DMFC), styrene monomer was graft-polymerized into poly(tetrafluoroethylene perfluoropropyl vinyl ether) (PFA) film followed by a sulfonation reaction. The graft polymerization was prepared by the $\Upsilon$-ray radiation-grafting method. Subsequently, sulfonation of the radiation-grafted film was carried out in a chlorosulfonic acid/1,2-dichloroethane (2 v/v%) solution. The chemical, physical, electrochemical and morphological properties of the radiation-grafted membranes (PFA-g-PSSA) were characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The water uptake, ionic conductivity, and methanol permeability of the PFA-g-PSSA membrane were also measured. The cell performances of MEA prepared with the PFA-g-PSSA membranes were evaluated and the cell resistances were measured by an impedance analyzer. The MEA using PFA-g-PSSA membranes showed superior performance for DMFCs in comparison with the commercial Nafion 112 membrane.

Accelerated Formation of Surface Films on the Degradation of LiCoO2 Cathode at High Temperature (표면 피막 형성이 LiCoO2 양극의 고온 열화에 미치는 영향)

  • Sung, Jong Hun;Hasan, Fuead;Yoo, Hyun Deog
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.3
    • /
    • pp.57-65
    • /
    • 2020
  • It is crucial to investigate the thermal degradation of lithium-ion batteries (LIBs) to understand the possible malfunction at high temperature. Herein, we investigated the effects of surface film formation on the thermal degradation of lithium cobalt oxide (LiCoO2, LCO) cathode that is one of representative cathode materials. Cycling test at 60℃ exhibited poorer cycleability compared with the cycling at 25℃. Cathodes after the initial 5 cycles at 60℃ (60-LCO) exhibited higher impedance compared to the cathode after initial 5 cycles at 25℃ (25-LCO), resulting in the lower rate capability upon subsequent cycling at 25℃, although the capacity values were similar at the lowest C-rate of 0.1C. In order to understand degradation of the LCO cathode at the high temperature, we analyzed the cathodes surface using X-ray photoelectron spectroscopy (XPS). Among various peaks, intensity of lithium hydroxide (LiOH) increased substantially after the operation at 60℃, and the C-C signal that represents the conductive agent was distinctly lower on 60-LCO compared to 25-LCO. These results pointed to an excessive formation of cathode-electrolyte interphase including LiOH at 60℃, leading to the increase in the resistance and the resultant degradation in the electrochemical performances.

Electrode characteristics of $AB_2$ type hydrogen storage alloy modified by Cr, La addition and fluorination ($AB_2$계 수소저장합금의 전극특성에 미치는 Cr, La 첨가 효과 및 표면 불화처리 효과)

  • Chang I.;Lee B. H.;Cho W. I.;Jang H.;Cho B. W.;Yun K. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.45-51
    • /
    • 1998
  • [ $AB_2-type$ ] alloy, one kind of hydrogen storage alloys used as an anode of Ni-MH batteries, has large discharge capacity but has remaining problems regarding initial activation, cycle life and self-discharge. This study investigates the effects of Cr-addition and fluorination after La-addition on $Zr_{0.7}Ti_{0.3}V_{0.4}Mn_{0.4}Ni_{1.2}$, composition $AB_2-type$ alloy. EPMA and SEM surface analysis techniques were used and the crystal structure was characterized by XRD analysis. In addition, electrodes were fabricated out of the alloys and characterized by constant current cycling test, electrochemical impedance spectroscopy and potentiodynamic polarization. Cr-addition was found to be effective to cycle life and self-discharge but ineffective to initial activation due to formation of stable oxide film on surface. Fluorination after La-addition to the alloys improved initial activation remarkably due to formation of highly reactive particles on surface.