DOI QR코드

DOI QR Code

Nitrided LATP Solid Electrolyte for Enhanced Chemical Stability in Alkaline Media

질화 처리된 LATP 고체전해질의 알칼라인 용액내에서의 내화학특성 개선 연구

  • Seong, Ji Young (Energy Efficiency Research Division, Korea Institute of Energy Research (KIER)) ;
  • Lee, Jong-Won (Energy Efficiency Research Division, Korea Institute of Energy Research (KIER)) ;
  • Im, Won Bin (School of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Sung-Soo (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Jung, Kyu-Nam (Energy Efficiency Research Division, Korea Institute of Energy Research (KIER))
  • 성지영 (한국에너지기술연구원 에너지효율연구본부) ;
  • 이종원 (한국에너지기술연구원 에너지효율연구본부) ;
  • 임원빈 (전남대학교 신소재공학부) ;
  • 김성수 (충남대학교 에너지과학기술대학원) ;
  • 정규남 (한국에너지기술연구원 에너지효율연구본부)
  • Received : 2015.03.12
  • Accepted : 2015.03.31
  • Published : 2015.05.31

Abstract

In the present work, to increase the chemical stability of the lithium-ion-conducting ceramic electrolyte ($Li_{1+x+y}Al_xTi_{2-x}Si_yP_{3-y}O_{12}$, LATP) in the strong alkaline solution, the surface of LATP was modified by the nitridation process. The surface and structural properties of nitride LATP solid electrolyte were characterized by X-ray diffraction, X-ray photoelectron spectrometer and scanning electron microscopy and ac-impedance spectroscopy, which were correlated to the chemical stability and electrochemical performance of LATP. The nitrided LATP immersed in the alkaline solution for 30 days exhibits the enhanced chemical stability than the pristine LATP. Moreover, a rechargeable hybrid Li-air battery constructed with the nitrided LATP solid electrolyte shows considerably reduced discharge-charge voltage gaps (enhanced the round-trip efficiency) in comparison to the cell constructed with pristine LATP, which indicate that the surface nitridation process can be the efficient way to improve the chemical stability of solid electrolyte in alkaline media.

본 연구에서는 리튬 이온 전도성 세라믹 고체전해질($Li_{1+x+y}Al_xTi_{2-x}Si_yP_{3-y}O_{12}$, LATP)의 알칼라인 용액 내에서의 화학적 안정성을 증가시키기 위하여, 고체전해질 표면을 질화 공정 처리를 통해 개질하였다. LATP 고체전해질의 화학적 안정성 및 전기화학 특성과 관련된 고체전해질 표면 형상 및 구조 특성 등을 X-선 회절법, X-선 광전자 분광법, 주사 전자 현미경 및 임피던스 측정을 통하여 분석하였다. 질화 처리된 LATP 시료를 30일간 알칼라인 용액에 담지하여, 표면 처리하지 않은 시료와 비교시 향상된 화학적 안정성을 나타냈으며, 이를 하이브리드 리튬-공기 전지에 적용하여 비교시 개선된 충방전 분극 및 효율 특성을 보였다. 이러한 결과를 바탕으로 질화 처리 공정을 통한 표면 개질은 알칼라인 용액내에서의 세라믹 고체전해질의 화학적 안정성을 증가시키는데 효과적으로 도움이 될 것으로 판단된다.

Keywords

References

  1. M. Armand and J.-M. Tarascon, Nature, 451, 652 (2008). https://doi.org/10.1038/451652a
  2. V. Neburchilov, H. Wang, J. J. Martin and W. Qu, J. Power Sources, 195, 1271 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.100
  3. G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, J. Phys. Chem. Lett., 1, 2193 (2010). https://doi.org/10.1021/jz1005384
  4. F. Cheng and J. Chen, Chem. Soc. Rev., 41, 2172 (2012). https://doi.org/10.1039/c1cs15228a
  5. J. Fu, J. Am Ceram. Soc., 80, 1901 (1997).
  6. N. Imanishi, S. Hasegawa, T. Zhang, A. Hirano, Y. Takeda, and O. Yamamoto, J. Power Sources, 185, 1392 (2008). https://doi.org/10.1016/j.jpowsour.2008.07.080
  7. T. Zhang, N. Imanishi, S. Hasegawa, A. Hirano, J. Xie, Y. Takeda, O. Yamamoto, and N. Sammes, Electrochem. Solid-State Lett., 12, A132 (2009). https://doi.org/10.1149/1.3125285
  8. T. Zhang, N. Imanishi, Y. Shimonishi, A. Hirano, Y. Takeda, O. Yamamoto, and N. Sammes, Chem. Commun., 46, 1661 (2010). https://doi.org/10.1039/b920012f
  9. Y. Wang and H. Zhou, J. Power Sources, 195, 358 (2010). https://doi.org/10.1016/j.jpowsour.2009.06.109
  10. P. He, Y. Wang, and H. Zhou, Electrochem. Commun., 12, 1686 (2010). https://doi.org/10.1016/j.elecom.2010.09.025
  11. L. Li, X. Zhao, and A. Manthiram, Electrochem. Commun., 14, 78 (2012). https://doi.org/10.1016/j.elecom.2011.11.007
  12. S. Hasegawa, N. Imanishi, T. Zhang, J. Xie, A. Hirano, Y. Takeda, and O. Yamamoto, J. Power Sources, 189, 371 (2009). https://doi.org/10.1016/j.jpowsour.2008.08.009
  13. Y. Shimonishi, T. Zhang, P. Johnson, N. Imanishi, A. Hirano, Y. Takeda, O. Yamamoto and N. Sammes, J. Power Sources, 195, 6187 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.023
  14. J. S. Thokchom and B. Kumar, J. Electrochem. Soc., 154, A331 (2007). https://doi.org/10.1149/1.2452822
  15. B. Kumar and S. Lin, J. Am. Ceram. Soc., 74, 226 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07322.x
  16. F. Ding, W. Xu, Y. Shao, X. Chen, Z. Wang, F. Gao, X. Liu, and J.-G. Zhang, J. Power Sources, 214, 292 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.058