DOI QR코드

DOI QR Code

Characterization and Performance of MEA for Direct Methanol Fuel Cell Prepared with PFA Grafted Polystyrene Membranes via Radiation-Grafting Method

방사선 그라프트 PFA-폴리스티렌 멤브레인으로 제조한 직접 메탄올 연료전지용 MEA의 성능과 특성

  • Kang, Se-Goo (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Peck, Dong-Hyun (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Kim, Sang-Kyung (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Lim, Seong-Yop (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Jung, Doo-Hwan (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Park, Young-Chul (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Shin, Jun-Hwa (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kang, Phil-Hyun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Nho, Young-Chang (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Shul, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 강세구 (한국에너지기술연구원 연료전지연구단) ;
  • 백동현 (한국에너지기술연구원 연료전지연구단) ;
  • 김상경 (한국에너지기술연구원 연료전지연구단) ;
  • 임성엽 (한국에너지기술연구원 연료전지연구단) ;
  • 정두환 (한국에너지기술연구원 연료전지연구단) ;
  • 박영철 (한국에너지기술연구원 연료전지연구단) ;
  • 신준화 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 강필현 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 노영창 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 설용건 (연세대학교 화공생명공학과)
  • Published : 2009.05.30

Abstract

In order to develop a novel polymer electrolyte membrane for direct methanol fuel cell (DMFC), styrene monomer was graft-polymerized into poly(tetrafluoroethylene perfluoropropyl vinyl ether) (PFA) film followed by a sulfonation reaction. The graft polymerization was prepared by the $\Upsilon$-ray radiation-grafting method. Subsequently, sulfonation of the radiation-grafted film was carried out in a chlorosulfonic acid/1,2-dichloroethane (2 v/v%) solution. The chemical, physical, electrochemical and morphological properties of the radiation-grafted membranes (PFA-g-PSSA) were characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The water uptake, ionic conductivity, and methanol permeability of the PFA-g-PSSA membrane were also measured. The cell performances of MEA prepared with the PFA-g-PSSA membranes were evaluated and the cell resistances were measured by an impedance analyzer. The MEA using PFA-g-PSSA membranes showed superior performance for DMFCs in comparison with the commercial Nafion 112 membrane.

DMFC (Direct Methanol Fuel Cell)용의 새로운 고분자 전해질 멤브레인을 개발하기 위하여 스티렌 단량체를 poly(tetrafluoroethylene perfluoropropyl vinyl ether) (PFA) 필름에 그라프트 중합 반응시킨 후에 술폰화 반응을 진행하였다. $\Upsilon$-ray를 이용하여 방사선 그라프트 중합 반응시킨 방사선 그라프트 필름의 술폰화 반응은 chlorosulfonic acid/dichloroethane (5 v/v%) 혼합 용액에서 진행하였다. PFA 그라프트 폴리스티렌 멤브레인 (PFA-g-PSSA)의 화학적, 물리적, 전기화학적 및 형태의 특성은 푸리에 변환 적외선 분광기 (FTIR), 이온전도도 측정기 및 주사전자현미경 (SEM)으로 분석하고 함수율과 메탄올 투과도도 측정하였다. PFA-g-PSSA 멤브레인으로 제작한 MEA의 단위전지 성능을 평가하였고, 전지의 셀 저항은 임피던스 분석 장치를 이용하여 측정하였다. PFA-g-PSSA 멤브레인으로 제조한 MEA는 Nafion 112로 제조한 MEA보다 우수한 DMFC 성능을 나타내었다.

Keywords

References

  1. C. K. Dyer, 'Fuel cells for portable applications' J. Power Sources, 106, 31 (2002) https://doi.org/10.1016/S0378-7753(01)01069-2
  2. X. Ren, T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, 'Methanol Transport Through Nation Membranes. Electro-osmotic Drag Effects on Potential Step Measurements' J. Electrochem. Soc., 147, 466 (2000) https://doi.org/10.1149/1.1393219
  3. T. Kallio, K. Kisko, K. Konttyri, R. Serimaa, F. Sundholm, and G. Sundholm, 'Relationship between methanol permeability and structure of different radiation-grafted membranes' Fuel cells, 4, 328 (2004) https://doi.org/10.1002/fuce.200400060
  4. V. Neburchilov, J. Martin, H. Wang, and J. Zhang, 'A review of polymer electrolyte membranes for direct methanol fuel cells' J. Power Sources, 169, 221 (2007) https://doi.org/10.1016/j.jpowsour.2007.03.044
  5. D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, and J. S. Kim, 'Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell' J. Power Sources, 106, 173 (2002) https://doi.org/10.1016/S0378-7753(01)01053-9
  6. R. Zeng, Z. Pang, and H. Zhu, 'Modification of a Nafion ion exchange membrane by a plasma polymerization process' J. Electroanal. Chem., 490, 102 (2000) https://doi.org/10.1016/S0022-0728(00)00241-2
  7. K. Miyatake, Y. Chikashige, and M. Watanabe, 'Novel sulfonated poly(arylene ether): a proton conductive polymer electrolyte designed for fuel cells' Macromolecules, 36, 9691 (2003) https://doi.org/10.1021/ma035452l
  8. R. K. Nagarale, G. S. Gohil, V. K. Shahi, and R. Rangarajan, 'Organic-inorganic hybrid membrane: thermally stable cation-exchange membrane prepared by the sol-gel method' Macromolecules, 37, 10023 (2004) https://doi.org/10.1021/ma048404p
  9. K. R. Park, P. H. Kang, and Y. C. Nho, 'Preparation of PFA-g-polystyrene sulfonic acid membranes by the-radiation grafting of styrene onto PFA films' Reactive & Functional Polymers, 65, 47 (2005) https://doi.org/10.1016/j.reactfunctpolym.2004.11.009
  10. J. Chen, M. Asano, T. Yamaki, and M. Yoshida, 'Chemical and radiation crosslinked polymer electrolyte membranes prepared from radiation-grafted ETFE films for DMFC applications' J. Power Sources, 158, 69 (2006) https://doi.org/10.1016/j.jpowsour.2005.09.024
  11. J. H. Choi, P. H. Kang, Y. M. Lim, J. Y. Sohn, J. Shin, C. H. Jung, J. P. Jeun, and Y. C. Nho, 'Preparation and Characterization of Poly(styrenesulfonic acid)-grafted Fluoropolymer Membrane for Direct Methanol Fuel Cell', Korean Membrane J., 9, 52 (2007)
  12. 원종웅, 전준표, 이범재, '불소고분자의 최근 개발 동향' 고분자 과학과 기술, 13, 724 (2002)
  13. S. Kang, D. H. Peck, Y. C. Park, S. K. Kim, S. Y. Lim, D. H. Jung, and J. H. Jang, 'Performance of membrane electrode assembly for DMFC prepared by bar-coating method' J. Korean Electrochem. Soc., 11, 16 (2008) https://doi.org/10.5229/JKES.2008.11.1.016
  14. M. M. Nasef, N. A. Zubir, A. F. Ismail, M. Khayet, K. Z. M. Dahlan, H. Saidi, R. Rohani, T. I. S. Ngah, and N. A. Sulaiman, 'PSSA pore-filled PVDF membranes by simultaneous electron beam irradiation: Preparation and transport characteristics of protons and methanol' J. Membr. Sci., 268, 96 (2006) https://doi.org/10.1016/j.memsci.2005.06.009
  15. R. Jiang, H.R. Kunz, and J.M. Fenton, 'Composite silica/Nafion membranes prepared by tetraethylothosilicate solgel reaction and solution casting for direct methanol fuel cells' J. Membr. Sci., 272, 116 (2005) https://doi.org/10.1016/j.memsci.2005.07.026
  16. C. A. Schiller, F. Richter, E. Glzow, and N. Wagner, 'Relaxation impedance as a model for the deactivation mechanism of fuel cells due to carbon monoxide poisoning' Phys. Chem. Chem. Phys., 3, 2113 (2001) https://doi.org/10.1039/b007674k
  17. R. P. O'hayre, S. W. Cha, W. Colella, and F. B. Prinz, 'Fuel cell fundamentals', 220, John Wiley & Sons, New York (2006)

Cited by

  1. Fabrication of Silane-crosslinked Proton Exchange Membranes by Radiation and Evaluation of Fuel Cell Performance vol.36, pp.4, 2012, https://doi.org/10.7317/pk.2012.36.4.525
  2. Experimental Study for Separation of Membrane and Recovery of Platinum from MEA vol.20, pp.4, 2011, https://doi.org/10.7844/kirr.2011.20.4.052
  3. Silane-crosslinked Proton Exchange Membranes Prepared by a Stepwise Radiation Grafting vol.36, pp.6, 2012, https://doi.org/10.7317/pk.2012.36.6.816
  4. Hydrophilization of a Porous Polytetrafluoroethylene Supporter by Radiation Grafting Poly(Acrylonitrile-co-Sodium Allylsulfonate) vol.38, pp.3, 2014, https://doi.org/10.7317/pk.2014.38.3.293