• Title/Summary/Keyword: Electrical Double Layer

Search Result 413, Processing Time 0.025 seconds

Double Layer Anti-reflection Coating for Crystalline Si Solar Cell (결정질 실리콘 태양전지를 위한 이층 반사방지막 구조)

  • Park, Je Jun;Jeong, Myeong Sang;Kim, Jin Kuk;Lee, Hi-Deok;Kang, Min Gu;Song, Hee-eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.73-79
    • /
    • 2013
  • Crystalline silicon solar cells with $SiN_x/SiN_x$ and $SiN_x/SiO_x$ double layer anti-reflection coatings(ARC) were studied in this paper. Optimizing passivation effect and optical properties of $SiN_x$ and $SiO_x$ layer deposited by PECVD was performed prior to double layer application. When the refractive index (n) of silicon nitride was varied in range of 1.9~2.3, silicon wafer deposited with silicon nitride layer of 80 nm thickness and n= 2.2 showed the effective lifetime of $1,370{\mu}m$. Silicon nitride with n= 1.9 had the smallest extinction coefficient among these conditions. Silicon oxide layer with 110 nm thickness and n= 1.46 showed the extinction coefficient spectrum near to zero in the 300~1,100 nm region, similar to silicon nitride with n= 1.9. Thus silicon nitride with n= 1.9 and silicon oxide with n= 1.46 would be proper as the upper ARC layer with low extinction coefficient, and silicon nitride with n=2.2 as the lower layer with good passivation effect. As a result, the double layer AR coated silicon wafer showed lower surface reflection and so more light absorption, compared with $SiN_x$ single layer. With the completed solar cell with $SiN_x/SiN_x$ of n= 2.2/1.9 and $SiN_x/SiO_x$ of n= 2.2/1.46, the electrical characteristics was improved as ${\Delta}V_{oc}$= 3.7 mV, ${\Delta}_{sc}=0.11mA/cm^2$ and ${\Delta}V_{oc}$=5.2 mV, ${\Delta}J_{sc}=0.23mA/cm^2$, respectively. It led to the efficiency improvement as 0.1% and 0.23%.

Electrical and Optical Properties of ITO Thin Films with Various Thicknesses of SiO2 Buffer Layer for Capacitive Touch Screen Panel (정전용량식 터치스크린 패널을 위한 SiO2 버퍼층 두께에 따른 ITO 박막의 전기적 및 광학적 특성)

  • Yeun-Gun, Chung;Yang-Hee, Joung;Seong-Jun, Kang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1069-1074
    • /
    • 2022
  • In this study, we prepared ITO thin films on the Nb2O5/SiO2 double buffer layer and investigated electrical and optical properties according to the change of SiO2 buffer layer thickness (40~50nm). The ITO thin film fabricated on the Nb2O5/SiO2 double buffer layer exhibited a broad surface roughness with a small value ranging of 0.815 to 1.181nm, and the sheet resistance was 99.3 to 134.0Ω/sq. It seems that there is no problem in applying the ITO thin film to a capacitive touch screen panel. In particular, the average transmittance in the short-wavelength (400~500nm) region and the chromaticity (b*) of the ITO thin film deposited on the Nb2O5(10nm)/SiO2(40nm) double buffer layer showed significantly improved results as 83.58% and 0.05, respectively, compared to 74.46% and 4.28 of ITO thin film without double buffer layer. As a result, it was confirmed that optical properties such as transmittance in the short-wavelength region and chromaticity were remarkably improved due to the index matching effect in the ITO thin film with the Nb2O5/SiO2 double buffer layer.

Improved Mesoporous Structure of High Surface Area Carbon Nanofiber for Electrical Double-Layer Capacitors

  • Lee, Young-Geun.;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.192-198
    • /
    • 2017
  • Carbon nanofiber (CNF) is used as an electrode material for electrical double layer capacitors (EDLCs), and is being consistently researched to improve its electrochemical performance. However, CNF still faces important challenges due to the low mesopore volume, leading to a poor high-rate performance. In the present study, we prepared the unique architecture of the activated mesoporous CNF with a high specific surface area and high mesopore volume, which were successfully synthesized using PMMA as a pore-forming agent and the KOH activation. The activated mesoporous CNF was found to exhibit the high specific surface area of $703m^2g^{-1}$, total pore volume of $0.51cm^3g^{-1}$, average pore diameter of 2.9 nm, and high mesopore volume of 35.2 %. The activated mesoporous CNF also indicated the high specific capacitance of $143F\;g^{-1}$, high-rate performance, high energy density of $17.9-13.0W\;h\;kg^{-1}$, and excellent cycling stability. Therefore, this unique architecture with a high specific surface area and high mesopore volume provides profitable synergistic effects in terms of the increased electrical double-layer area and favorable ion diffusion at a high current density. Consequently, the activated mesoporous CNF is a promising candidate as an electrode material for high-performance EDLCs.

Photoinduced Hydrophilicity of Heterogeneous TiO2/WO3 Double Layer Films (이종 접합 구조를 갖는 TiO2/WO3 이중 박막의 광유기 친수 특성)

  • Oh, Ji-Yong;Lee, Byung-Roh;Kim, Hwa-Min;Lee, Chang-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.715-720
    • /
    • 2015
  • The photoinduced hydrophilicity of $TiO_2/WO_3$ double layer films was fabricated by using a conventional rf-magnetron sputtering method. The photoinduced hydrophilic reaction of the $TiO_2$ surface was enhanced by the presence of $WO_3$ under the $TiO_2$ layer by irradiation of a 10 W cylindrical fluorescent light bulb. However, when the $TiO_2$ and $WO_3$ layers were separated by an insulating layer, the surface did not appeared high hydrophilic, under the same light bulb. The enhanced photoinduced hydrophilic reaction can be explained by the charge transfer between $TiO_2$ and $WO_3$ layers. It was also demonstrated that visible light passing through the $TiO_2$ layer could excite $WO_3$. Thus, visible light can be used for the hydrophilic reaction in the present $TiO_2/WO_3$ system.

The properties of copper films deposited by RF magnetron sputtering (RF 마그네트론 스퍼터링법에 의해 증착된 구리막의 특성)

  • 송재성;오영우
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.727-732
    • /
    • 1996
  • In the present paper, the Cu films 4.mu.m thick were deposited by RF magnetron sputtering method on Si wafer. The Cu films deposited at a condition of 100W, 10mtorr exhibited a low electrical resistivity of 2.3.mu..ohm..cm and densed microstructure, poor adhesion. The Cu films grown by 200W, 20mtorr showed a good adhesion property and higher electrical resistivity of 7.mu..ohm..cm because of porous columnar microstructure. Therefore, The Cu films were deposited by double layer deposition method using RF magnetron sputtering on Si wafer. The dependence of the electrical resistivity, adhesion, and reflectance in the CU films [C $U_{4-d}$(low resistivity) / C $U_{d}$(high adhesion) / Si-wafer] on the thickness of d has been investigated. The films formed with this deposition methods had the low electrical resistivity of about 2.6.mu..ohm..cm and high adhesion of about 700g/cm.m.m.

  • PDF

The Optimal Design and Electrical Characteritics of 1,700 V Class Double Trench Gate Power MOSFET Based on SiC (1,700 V급 SiC 기반의 단일 및 이중 트렌치 게이트 전력 MOSFET의 최적 설계 및 전기적 특성 분석)

  • Ji Yeon Ryou;Dong Hyeon Kim;Dong Hyeon Lee;Ey Goo Kang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.385-390
    • /
    • 2023
  • In this paper, the 1,700 V level SiC-based power MOSFET device widely used in electric vehicles and new energy industries was designed, that is, a single trench gate power MOSFET structure and a double trench gate power MOSFET structure were proposed to analyze electrical characteristics while changing the design and process parameters. As a result of comparing and analyzing the two structures, it can be seen that the double trench gate structure shows quite excellent characteristics according to the concentration of the drift layer, and the breakdown voltage characteristics according to the depth of the drift layer also show excellent characteristics of 200 V or more. Among them, the trench gate power MOSFET device can be applied not only to the 1,700 V class but also to a voltage range above it, and it is believed that it can replace all Si devices currently applied to electric vehicles and new energy industries.

Dielectric composition of the double pancake coil interior (Double pancake 코일 내부의 절연구성 연구)

  • Joung, Jong-Man;Baek, Sung-Myeong;Kwak, Dong-Sun;Lee, Joung-Won;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.210-213
    • /
    • 2002
  • For insulation design of the superconducting transformer, many types of insulation tests should be carried out. To clarify the components of insulation for superconducting transformer, there are main four parts as 1ike that turn-to-turn interior of each primary and secondary windings, layer-to-layer between primary and secondary windings, and winding to grounded structures. The insulation components should meet the required withstand voltage of the system and enough safety factors must included. As the fundamental insulation characteristics, we tested surface flashover voltage of spacer that would place between the coils and would take the role of both cooling duct and insulator. The structure of spacer in practice vary depending on coil type, in this work we considered double pancake coil for the superconducting transformer. In this study we tested flashover voltages of several arrangement of spacer.

  • PDF

Design of Coordinated Frequency Control Strategy applied to EDLC and BESSs for Microgrid in the Islanded Mode (독립운전 모드의 마이크로그리드에서 EDLC와 BESS의 주파수 협조제어전략 설계)

  • Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.820-827
    • /
    • 2014
  • Since a microgrid has renewable energy sources, imbalance between power supply and power demand occurs in the islanded mode. In order to solve the imbalance, several energy storage systems (ESSs) such as bettary energy storage system (BESS), EDLC (electric double layer capacitor), flywheel, and SMES (superconducting magnetic energy storage) are generally used. Especially, their electrical characteristics are different. For efficient use of them, a coordinated control scheme is required. In this paper, a coordinated control scheme for using a Lead-acid BESS, a Lithium BESS, and a EDLC is designed to efficient frequency control for a microgrid in the islanded mode. The coordinated frequency control strategy is designed based on their electrical characteristics. The feasibility of the proposed coordinated frequency control strategy is verified through the simulation.

Fabrication of Mesoporous Carbon Nanofibers for Electrical Double-Layer Capacitors (전기 이중층 커패시터용 메조 다공성 탄소 나노섬유의 제조)

  • Lee, Do-Young;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.617-623
    • /
    • 2017
  • Mesoporous carbon nanofibers as electrode material for electrical double-layer capacitors(EDLCs) are fabricated using the electrospinning method and carbonization. Their morphologies, structures, chemical bonding states, porous structure, and electrochemical performance are investigated. The optimized mesoporous carbon nanofiber has a high sepecific surface area of $667m^2\;g^{-1}$, high average pore size of 6.3 nm, and high mesopore volume fraction of 80 %, as well as a unifom network structure consiting of a 1-D nanofiber stucture. The optimized mesoporous carbon nanofiber shows outstanding electrochemical performance with high specific capacitance of $87F\;g^{-1}$ at a current density of $0.1A\;g^{-1}$, high-rate performance ($72F\;g^{-1}$ at a current density of $20.0A\;g^{-1}$), and good cycling stability ($92F\;g^{-1}$ after 100 cycles). The improvement of the electrochemical performance via the combined effects of high specific surface area are due to the high mesopore volume fraction of the carbon nanofibers.

The Effect of Curie Point Annealing on Electrophysical Phenomena at the Magnetized SrO 6$Fe_{2}O_{3}$ Ceramics/Electrolyte Interface (자화된 SrO 6$Fe_{2}O_{3}$ 세라믹스와 전해질 계면의 전기물리적 현상에 미치는 Curie점 열처리 효과)

  • 천장호;손광철;라극환
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.7
    • /
    • pp.63-68
    • /
    • 1994
  • The Curie point annealing effects on electrophysical phenomena at the magnetized strontium ferrite(SrO$\cdot$ 6$Fe_{2}O_{3}$) ceramics electrode/10$^{-3}$M KC1 aqueous electrolyte interfaces have been studied using cyclic voltammetric, normal pulse voltammetric, chronocoulometric, and electrochemical impedance techiques. After the Curie point annealing the magnetic flux densities of the speciment was decreased from 900-1100 gauss to 1-2 gauss, i.e. demagnetized. The real component of interfacial impedance was decreased from 7280-7320 ohm to 790-830 ohm. The adsorption and the charge on the electrical double layer was increased from 0 $\mu$C to -58 $\mu$C. The Curie point annealing and the related electrical double layer effect can influence not only the electrophysical properties of the strontium ferrite ceramics electrode itself but also the electrochemical phenomena at the electrode interface. This experimental results suggest that the Curie point annealing and the related electrical double layer effect can be applied to electrochemical magnetic sensors.

  • PDF