DOI QR코드

DOI QR Code

Double Layer Anti-reflection Coating for Crystalline Si Solar Cell

결정질 실리콘 태양전지를 위한 이층 반사방지막 구조

  • Park, Je Jun (Department of Electronic Engineering, Chungnam National University) ;
  • Jeong, Myeong Sang (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Kim, Jin Kuk (Solar Energy Research Center, Korea Institute of Energy Research) ;
  • Lee, Hi-Deok (Department of Electronic Engineering, Chungnam National University) ;
  • Kang, Min Gu (Solar Energy Research Center, Korea Institute of Energy Research) ;
  • Song, Hee-eun (Solar Energy Research Center, Korea Institute of Energy Research)
  • 박제준 (충남대학교 일반대학원 전자.전파.정보통신공학과) ;
  • 정명상 (충남대학교 녹색에너지기술대학원 녹색에너지기술학과) ;
  • 김진국 (한국에너지기술연구원, 태양에너지 연구단) ;
  • 이희덕 (충남대학교 일반대학원 전자.전파.정보통신공학과) ;
  • 강민구 (한국에너지기술연구원, 태양에너지 연구단) ;
  • 송희은 (한국에너지기술연구원, 태양에너지 연구단)
  • Received : 2012.11.26
  • Accepted : 2012.12.11
  • Published : 2013.01.01

Abstract

Crystalline silicon solar cells with $SiN_x/SiN_x$ and $SiN_x/SiO_x$ double layer anti-reflection coatings(ARC) were studied in this paper. Optimizing passivation effect and optical properties of $SiN_x$ and $SiO_x$ layer deposited by PECVD was performed prior to double layer application. When the refractive index (n) of silicon nitride was varied in range of 1.9~2.3, silicon wafer deposited with silicon nitride layer of 80 nm thickness and n= 2.2 showed the effective lifetime of $1,370{\mu}m$. Silicon nitride with n= 1.9 had the smallest extinction coefficient among these conditions. Silicon oxide layer with 110 nm thickness and n= 1.46 showed the extinction coefficient spectrum near to zero in the 300~1,100 nm region, similar to silicon nitride with n= 1.9. Thus silicon nitride with n= 1.9 and silicon oxide with n= 1.46 would be proper as the upper ARC layer with low extinction coefficient, and silicon nitride with n=2.2 as the lower layer with good passivation effect. As a result, the double layer AR coated silicon wafer showed lower surface reflection and so more light absorption, compared with $SiN_x$ single layer. With the completed solar cell with $SiN_x/SiN_x$ of n= 2.2/1.9 and $SiN_x/SiO_x$ of n= 2.2/1.46, the electrical characteristics was improved as ${\Delta}V_{oc}$= 3.7 mV, ${\Delta}_{sc}=0.11mA/cm^2$ and ${\Delta}V_{oc}$=5.2 mV, ${\Delta}J_{sc}=0.23mA/cm^2$, respectively. It led to the efficiency improvement as 0.1% and 0.23%.

Keywords

References

  1. I. G. Kavakli and K. Kantarli, Turk. J. Phys., 26, 349 (2002).
  2. M. Ohring, Materials Science of Thin Films, 2nd ed. (Academic Press, San Diego, 2001) p. 568-569.
  3. S. J. Fang, W. Chen, T. Yamanaka, and C. R. Helms, Appl. Phys. Lett., 68, 2837 (1996). https://doi.org/10.1063/1.116341
  4. M. A. Green, Solar Cells Operating Principles, Technology, and System Applications, (Prentice-hall, New Jersey, 1982) p. 161-165.
  5. C. Chen, Y. Lin, C. Lai, C. Kuo, and S. Ho, IEEE Photo. Spec. Conf., 37th, 2133 (2011).
  6. W. Soppe, H. Rieffe, and A. Weeber, Prog. Photovolt: Res. Appl., 20, 551 (2005).
  7. S. K. Dhungel, J. Yoo, K. Kim, S. Jung, S. Ghosh, and J. Yi, J. Korean Phys. Soc., 49, 885 (2006).
  8. F. Duerinckx and J. Szlufcik, Sol. Energ. Mat. Sol., C72, 231 (2002).
  9. B. Kumar, T. B. Pandian, E. Sreekiran, and S. Narayanan, IEEE Photo. Spec. Conf. 31st, 1205 (2005).
  10. M. J. Kerr and J. Schmidt, A. Cuevas, Semicond. Sci. Tech., 16, 164 (2001). https://doi.org/10.1088/0268-1242/16/3/308
  11. J. Seiffe, L. Gautero, M. Hofmann, J. Rentsch, and R. Preu, J. Appl. Phys., 109, 034105 (2011). https://doi.org/10.1063/1.3544421
  12. K. D. Lee, S. S. Dahiwale, Y. D. Kim, S. Kim, S. Bae, S. Park, S. J. Tark, and D. Kim, Curr. Appl. Phys., 13, 241 (2013). https://doi.org/10.1016/j.cap.2012.07.017