DOI QR코드

DOI QR Code

Photoinduced Hydrophilicity of Heterogeneous TiO2/WO3 Double Layer Films

이종 접합 구조를 갖는 TiO2/WO3 이중 박막의 광유기 친수 특성

  • Oh, Ji-Yong (Department of Electronic and Electrical Engineering, Catholic University of Daegu) ;
  • Lee, Byung-Roh (Department of Physics, Kyung Hee University) ;
  • Kim, Hwa-Min (Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu) ;
  • Lee, Chang-Hyun (Department of Electronic and Electrical Engineering, Catholic University of Daegu)
  • 오지용 (대구가톨릭대학교 전자전기공학과) ;
  • 이병로 (경희대학교 물리학과) ;
  • 김화민 (대구가톨릭대학교 신소재화학공학과) ;
  • 이창현 (대구가톨릭대학교 전자전기공학과)
  • Received : 2015.10.09
  • Accepted : 2015.10.24
  • Published : 2015.11.01

Abstract

The photoinduced hydrophilicity of $TiO_2/WO_3$ double layer films was fabricated by using a conventional rf-magnetron sputtering method. The photoinduced hydrophilic reaction of the $TiO_2$ surface was enhanced by the presence of $WO_3$ under the $TiO_2$ layer by irradiation of a 10 W cylindrical fluorescent light bulb. However, when the $TiO_2$ and $WO_3$ layers were separated by an insulating layer, the surface did not appeared high hydrophilic, under the same light bulb. The enhanced photoinduced hydrophilic reaction can be explained by the charge transfer between $TiO_2$ and $WO_3$ layers. It was also demonstrated that visible light passing through the $TiO_2$ layer could excite $WO_3$. Thus, visible light can be used for the hydrophilic reaction in the present $TiO_2/WO_3$ system.

Keywords

References

  1. K. Honda and A. Fujishim, Nature, 238, 37 (1972). [DOI: http://dx.doi.org/10.1038/238037a0]
  2. A. Heller, Acc. Chem. Res., 28, 141 (1995). [DOI: http://dx.doi.org/10.1021/ar00060a006]
  3. A. L. Linsebigler, G. Q. Lu, and J. T. Yates, Chem. Rev., 95, 735 (1995). [DOI: http://dx.doi.org/10.1021/cr00035a013]
  4. A. Fujishima, K. Hashimoto, and T. Watanabe, Fundamentals and Applications (BKC, Inc., 1999) p. 14.
  5. T. Kawai and T. Sakata, Nature, 286, 474 (1980). [DOI: http://dx.doi.org/10.1038/286474a0]
  6. I. Rosenberg, Brock, and A. J. Heller, Phys. Chem., 96, 3523 (1992). [DOI: http://dx.doi.org/10.1021/j100196a061]
  7. A. Mills and S.L.J. Hunte, Photochem Photobiol A Chem., 108, 1 (1997). [DOI: http://dx.doi.org/10.1016/S1010-6030(97)00118-4]
  8. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Nature, 388, 431 (1997). [DOI: http://dx.doi.org/10.1038/41233]
  9. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Adv. Mater., 10, 135 (1998). [DOI: http://dx.doi.org/10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M]
  10. N. Sakai, R. Wang, A. Fujishima, T. Watanabe, and K. Hashimoto, Langmuir, 14, 5918 (1998). [DOI: http://dx.doi.org/10.1021/la980623e]
  11. R. Wang, N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B, 103, 2188 (1999). [DOI: http://dx.doi.org/10.1021/jp983386x]
  12. T. Watanabe, A. Nakajima, R. Wang, Minabe, S. Koizumi, A. Fujishima, and K. Hashimoto, Thin Solid Films, 351, 260 (1999). [DOI: http://dx.doi.org/10.1016/S0040-6090(99)00205-9]
  13. M. Miyauchi, A, Nakajima, A, Fujishima, K, Hashimoto, and T. Watanabe, Chem. Mater., 12, 3 (2000). [DOI: http://dx.doi.org/10.1021/cm990556p]
  14. A. Fujishima, K. Hashimoto, and T. Watanabe, TiO2 Photocatalysis Fundamentals and Applications (BKC Inc., Tokyo, Japan, 1999).
  15. N. Serpone, E. Borgarello, and M. J. Gratzel, Chem. Soc., Chem. Commun., 342 (1984). [DOI: http://dx.doi.org/10.1039/c39840000342]
  16. N. Serpone, P, Maruthamuthu, P. Pichat, E. Pelizzetti, and H. Hidaka, J. Photochem. Photobiol. A, 85, 247 (1995). [DOI: http://dx.doi.org/10.1016/1010-6030(94)03906-B]
  17. I. Bedja and P. V. Kamat, J. Phys. Chem., 99, 9182 (1995). [DOI: http://dx.doi.org/10.1021/j100022a035]
  18. A. Hattori, Y. Tokihisa, H. Tada, and S. Ito, J. Electro Chem. Soc., 147, 2279 (2000). [DOI: http://dx.doi.org/10.1149/1.1393521]
  19. H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge and S. Ito, J. Phys. Chem. B, 104, 4585 (2000). [DOI: http://dx.doi.org/10.1021/jp000049r]
  20. Y. Cao, X. Zhang, W. Yang, H. Du, Y. Bai, T. Li, and J. Yao, Chem. Mater., 12, 3445 (2000). [DOI: http://dx.doi.org/10.1021/cm0004432]
  21. L. Shi, C. Li, H. Gu, and D. Fang, Mater. Chem. Phys., 62, 62 (2000). [DOI: http://dx.doi.org/10.1016/S0254-0584(99)00171-6]
  22. A. D. Paola, L. Palmisano, A. M. Venezia, and V. J. Augugliaro, Phys. Chem. B, 103, 8236 (1999). [DOI: http://dx.doi.org/10.1021/jp9911797]
  23. G. Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R.J.D. Tilley, and A. M Venezia, J. Phys. Chem. B, 105, 1026 (2001). [DOI: http://dx.doi.org/10.1021/jp003172r]
  24. Y. R. Do, W. Lee, K. Dwight, and A. Wold, J. Solid State Chem., 108, 198 (1994). [DOI: http://dx.doi.org/10.1006/jssc.1994.1031]
  25. C. Martin, G. Solana, V. Rives, G. Marci, L. Palmisano, and A. Sclafami, J. Chem. Soc. Faraday Trans., 92, 819 (1996). [DOI: http://dx.doi.org/10.1039/ft9969200373]
  26. Y. T. Kwon, K. Y. Song, W. I. Lee, G. J. Choi, and Y. R. Do, J. Catal., 191, 192 (2000). [DOI: http://dx.doi.org/10.1006/jcat.1999.2776]
  27. K. Y. Song, M. K. Park, Y. T. Kwon, H. W. Lee, W. J. Chung, and W. I. Lee, Chem. Mater., 13, 2349 (2001). [DOI: http://dx.doi.org/10.1021/cm000858n]
  28. G. Marci, L. Palmisano, A. Sclafani, A. M. Venezia, R. Campostrini, G. Carturan, C. Martin, V. Rives, and G. J. Solana, Chem. Soc. Faraday Trans., 92, 819 (1996). [DOI: http://dx.doi.org/10.1039/ft9969200819]
  29. I. Shiyanovskaya and M. Hepel, J. Electrochem. Soc., 145, 3981 (1998). [DOI: http://dx.doi.org/10.1149/1.1838902]
  30. I. Shiyanovskaya and M. Hepel, J. Electrochem. Soc., 146, 243 (1999). [DOI: http://dx.doi.org/10.1149/1.1391593]
  31. M. Callies, Y. Chen, F. Marty, A. Pepin, and D. Quere, Microelectron. Eng., 78, 100 (2005). [DOI: http://dx.doi.org/10.1016/j.mee.2004.12.093]
  32. B. Bhushan, Y. C. Jung, and K. Koch, (Phil. Trans. R. Soc. A, 367, 2009) p. 1631. [DOI: http://dx.doi.org/10.1098/rsta.2009.0014]
  33. R. Wang, N. Sakai, A. Fujishima, T. Watanabe, and H. Hashimoto, J. Phys. Chem. B, 103, 2188 (1999). [DOI: http://dx.doi.org/10.1021/jp983386x]
  34. M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto, Chem. Mater., 14, 2812 (2002). [DOI: http://dx.doi.org/10.1021/cm020076p]
  35. K. Ishibashi, Y. Nosaka, K. Hashimoto, and A. Fujishima, J. Phys. Chem. B, 102, 2117 (1998). [DOI: http://dx.doi.org/10.1021/jp973401i]
  36. K. Ikeda, R. Baba, K. Hashimoto, and A. Fujishima, J. Phys. Chem., 101, 2617 (1997). [DOI: http://dx.doi.org/10.1021/jp9627281]
  37. N. Sakai, A. Fuhishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B, 105, 3023 (2001). [DOI: http://dx.doi.org/10.1021/jp003212r]