• Title/Summary/Keyword: Electric-Vehicles

Search Result 1,388, Processing Time 0.033 seconds

Lithium - A Critical Metal for Clean Energy Technologies: A Comprehensive Review on Challenges and Opportunities for Securing Lithium from Primary and Secondary Resources (리튬-청정 에너지 기술의 핵심금속: 1차 및 2차 자원으로부터 리튬 확보를 위한 도전과 기회에 대한 종합적 고찰)

  • Swain, Basudev;Kim, Min-seuk;Lee, Chan-Gi;Chung, Kyeong Woo;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.3-18
    • /
    • 2019
  • Due to the increasing demand for clean energy, the consumption of lithium ion batteries (LIBs) is expected to grow steadily. Therefore, stable supply of lithium is becoming an important issue globally. Commercially, most of lithium is produced from the brine and minerals viz., spodumene, although various processes/technologies have been developed to recover lithium from other resources such as low grade ores, clays, seawaters and waste lithium ion batteries. In particular, commercialization of such recycling technologies for end-of-life LIBs being generated from various sources including mobile phones and electric vehicles(EVs), has a great potential. This review presents the commercial processes and also the emerging technologies for exploiting minerals and brines, besides that of newly developed lithium-recovery-processes for the waste LIBs. In addition, the future lithium-supply is discussed from the technical point of view. Amongst the emerging processes being developed for lithium recovery from low-grade ores, focus is mostly on the pyro-cum-hydrometallurgical based approaches, though only a few of such approaches have matured. Because of low recycling rate (<1%) of lithium globally compared to the consumption of lithium ion batteries (56% of lithium produced currently), processing of secondary resources could be foresighted as the grand opportunity. Considering the carbon economy, environment, and energy concerns, the hydrometallurgical process may potentially resolve the issue.

A Study on the Automation of MVDC System-Linked Digital Substation (MVDC 시스템연계 디지털변전소 자동화 연구)

  • Jang, Soon Ho;Koo, Ja Ik;Mun, Cho Rong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.7
    • /
    • pp.199-204
    • /
    • 2021
  • Digital substation refers to a substation that digitizes functions and communication methods of power facilities such as monitoring, measuring, control, protection, and operation based on IEC 61850, an international standard for the purpose of intelligent power grids. Based on the intelligent operating system, efficient monitoring and control of power facilities is possible, and automatic recovery function and remote control are possible in the event of an accident, enabling rapid power failure recovery. With the development of digital technology and the expansion of the introduction of eco-friendly renewable energy and electric vehicles, the spread of direct current distribution systems is expected to expand. MVDC is a system that utilizes direct current lines with voltage levels and transmission capacities between HVDCs applied to conventional transmission systems and LVDCs from consumers. Converting existing lines in substations, where most power equipment is alternating current centric, to direct current lines will reduce transmission losses and ensure greater current capacity. The process bus of a digital substation is a communication network consisting of communication equipment such as Ethernet switches that connect installed devices between bay level and process level. For MVDC linkage to existing digital substations, the process level was divided into two buses: AC and DC, and a system that can be comprehensively managed in conjunction with diagnostic IEDs as well as surveillance and control was proposed.

A Study on the Corrosion Prevention of the Integral Series Generator for Military Vehicles (군용차량용 엔진일체형 직렬 발전기 부식 방지에 관한 연구)

  • Kang, Tae-Woo;Kim, Seong-Gon;Shin, Cheol-Ho;Lee, Kye-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.74-79
    • /
    • 2019
  • The military vehicle produces electric power through an engine-integrated serial hybrid generator that is connected to the engine and does not have a separate generator installation space. However, depending on the mechanical characteristics of the connection between the generator and the engine, iron oxide for internal rusting and lubrication grew scattered. The iron oxide is adhered to the starter to deteriorate the starting performance, and there is a problem that the noise of the leg due to wear of the gear is increased. To solve this problem, the connection spline material and the surface treatment of the engine were improved and the shape was changed to a grease sealing type to prevent the generation of iron oxide inside. As the shape of the generator connector composing the shafting system was changed, the integrity of the structure was confirmed through the torsional endurance test. In addition, through the actual vehicle load test, it was verified that no corrosion occurred during the target life span without internal corrosion. It was confirmed that the anti-scattering structure of the grease effectively suppresses the generation of iron oxide, thereby reducing the noise generated from the generator. In this paper, we propose a fundamental solution to the degradation of the starter and the noise generation by preventing the back corrosion caused by the serial hybrid generator installed between the engine and the transmission.

Analysis of Automotive HMI Characteristics through On-road Driving Research (실차 주행 연구를 통한 차량별 HMI 특성 분석)

  • Oh, Kwangmyung
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.49-60
    • /
    • 2019
  • With the appearance of self-driving cars and electric cars, the automobile industry is rapidly changing. In the midst of these changes, HMI studies are becoming more important as to how the driver obtains safety and convenience with controlling the vehicle. This study sought to understand how automobile manufacturers understand the driving situation, and how they define and limit driver interaction. For this, prior studies about HMI were reviewed and 15 participants performed an on-road study to drive vehicles from five manufacturers with using their interfaces. The results of the study confirmed that buttons and switches that are easily controlled by the user while driving were different from manufacturer to manufacturer. And there are some buttons that are more intensively controlled and others that are difficult to control while driving. It was able to derive 'selection and concentration' from Audi's vehicle, 'optimization of the driving ' from BMW's, 'simple and minimize' from Benz's vehicle, 'remove the manual distraction' from the vehicle of Lexus, and 'visual stability' from KIA's vehicle as the distinctive keywords for the HMI. This shows that each manufacturer has a different definition and interpretation of the driver's driving control area. This study has a distinct value in that it has identified the characteristics of vehicle-specific HMI in actual driving conditions, which is not apparent in appearance. It is expected that this research approach can be useful to see differences in interaction through actual driving despite changes in driving environment such as vehicle platooning and self-driving technology.

Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries (리튬이차전지용 고체 전해질의 최근 진전과 전망)

  • Kim, Jumi;Oh, Jimin;Kim, Ju Young;Lee, Young-Gi;Kim, Kwang Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.87-103
    • /
    • 2019
  • Nonaqueous organic electrolyte solution in commercially available lithium-ion batteries, due to its flammability, corrosiveness, high volatility, and thermal instability, is demanding to be substituted by safer solid electrolyte with higher cycle stability, which will be utilized effectively in large-scale power sources such as electric vehicles and energy storage system. Of various types of solid electrolytes, composite solid electrolytes with polymer matrix and active inorganic fillers are now most promising in achieving higher ionic conductivity and excellent interface contact. In this review, some kinds and brief history of solid electrolyte are at first introduced and consequent explanations of polymer solid electrolytes and inorganic solid electrolytes (including active and inactive fillers) are comprehensively carried out. Composite solid electrolytes including these polymer and inorganic materials are also described with their electrochemical properties in terms of filler shapes, such as particle (0D), fiber (1D), plane (2D), and solid body (3D). In particular, in all-solid-state lithium batteries using lithium metal anode, the interface characteristics are discussed in terms of cathode-electrolyte interface, anode-electrolyte interface, and interparticle interface. Finally, current requisites and future perspectives for the composite solid electrolytes are suggested by help of some decent reviews recently reported.

Discovering the Knowledge Structure of Graphene Technology by Text Mining National R&D Projects and Newspapers (국가R&D과제와 신문에서 텍스트마이닝을 통한 그래핀 기술의 지식구조 탐색)

  • Lee, Ji-Yeon;Na, Hye-In;Lee, Byeong-Hee;Kim, Tae-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.85-99
    • /
    • 2021
  • Graphene, called the "dream material" is drawing attention as a groundbreaking new material that will lead the era of the 4th Industrial Revolution. Graphene has high strength, excellent electrical and thermal conductivity, excellent optical permeability, and excellent gas barrier properties. In this paper, as the South Korean government recently announced Green New Deal and Digital New Deal policy, we analyze graphene technology, which is also attracting attention for its application to Corona 19 biosensor, to understand its national R&D trend and knowledge structure, and to explore the possibility of its application. Firstly, 4,054 cases of national R&D project information for the last 10 years are collected from the National Science & Technology Information Service(NTIS) to analyze the trend of graphene-related R&D. Besides, projects classified as green technology are analyzed concerning the government's Green New Deal policy. Secondly, text mining analysis is conducted by collecting 500 recent graphene-related articles from e-newspapers. According to the analysis, the field with the largest number of projects was found to be high-efficiency secondary battery technology, and the proportion of total research funds was also the highest. It is expected that South Korea will lead the development of graphene technology in the future to become a world leader in diverse industries including electric vehicles, cellular phone batteries, next-generation semiconductors, 5G, and biosensors.

Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water (리튬 함유 폐액에서의 리튬 농도와 생태독성과의 연관성 연구)

  • Jin, Yun-Ho;Kim, Bo-Ram;Kim, Dae-Weon
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2021
  • Demand for lithium-based secondary batteries is greatly increasing with the explosive growth of related industries, such as mobile devices and electric vehicles. In Korea, there are several top-rated global lithium-ion battery manufacturers accounting for 40% of the global secondary battery business. Most discarded lithium secondary batteries are recycled as scrap to recover valuable metals, such as Nickel and Cobalt, but residual wastes are disposed of according to the residual lithium-ion concentration. Furthermore, there has not been an attempt on the possibility of water discharge system contamination due to the concentration of lithium ions, and the effluent water quality standards of public sewage treatment facilities are becoming stricter year after year. In this study, the as-received waste water generated from the cathode electrode coating process in the manufacturing of high-nickel-based NCM cathode material used for high-performance and long-term purposes was analyzed. We suggested a facile recycling process chart for waste water treatment. We revealed a correlation between lithium-ion concentration and pH effect according to the proposed waste water of each recycling process through analyzing standard water quality tests and daphnia ecological toxicity. We proposed a realistic waste water treatment plan for lithium electrode manufacturing plants via comparison with other industries' ecotoxicology.

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

Research on Longitudinal Slope Estimation Using Digital Elevation Model (수치표고모델 정보를 활용한 도로 종단경사 산출 연구)

  • Han, Yohee;Jung, Yeonghun;Chun, Uibum;Kim, Youngchan;Park, Shin Hyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.84-99
    • /
    • 2021
  • As the micro-mobility market grows, the demand for route guidance, that includes uphill information as well, is increasing. Since the climbing angle depends on the electric motor uesed, it is necessary to establish an uphill road DB according to the threshold standard. Although road alignment information is a very important element in the basic information of the roads, there is no information currently on the longitudinal slope in the road digital map. The High Definition(HD) map which is being built as a preparation for the era of autonomous vehicles has the altitude value, unlike the existing standard node link system. However, the HD map is very insufficient because it has the altitude value only for some sections of the road network. This paper, hence, intends to propose a method to generate the road longitudinal slope using currently available data. We developed a method of computing the longitudinal slope by combining the digital elevation model and the standard link system. After creating an altitude at the road link point divided by 4m based on the Seoul road network, we calculated individual slope per unit distance of the road. After designating a representative slope for each road link, we have extracted the very steep road that cannot be climbed with personal mobility and the slippery roads that cannot be used during heavy snowfall. We additionally described errors in the altitude values due to surrounding terrain and the issues related to the slope calculation method. In the future, we expect that the road longitudinal slope information will be used as basic data that can be used for various convergence analyses.

Analysis of Electrochemical Properties of Sulfide All-Solid-State Lithium Ion Battery Anode Material Using Amorphous Carbon-Removed Graphite (비정질 탄소가 제거된 흑연을 이용한 황화물계 전고체 리튬이온전지 음극소재 전기화학적 특성 분석)

  • Choi, Jae Hong;Oh, Pilgun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.58-63
    • /
    • 2022
  • Graphite has been used as an anode material for lithium-ion batteries for the past 30 years due to its low de-/lithiation voltage, high theoretical capacity of 372 mAh/g, low price, and long life properties. Recently, all-solid-state lithium-ion batteries (ASSLB), which are composed of inorganic solid materials with high stability, have received great attention as electric vehicles and next-generation energy storage devices, but research works on graphite that works well for ASSLB systems are insufficient. Therefore, we induced the performance improvement of ASSLB anode electrode graphite material by removing the amorphous carbon present in the carbon material surface, acting as a resistive layer from the graphite. As a result of X-ray diffraction (XRD) analysis using heat treated graphite in air at 400, 500, and 600 ℃, the full width at half maximum (FWHM) at (002) peak was reduced compared to that of bare graphite, indicating that the crystallinity of graphite was improved after heat treatment. In addition, the discharge capacity, initial coulombic efficiency (ICE) and cycle stability increased as the crystallinity of graphite increased after heat treatment. In the case of graphite annealed in air at 500 ℃, the high capacity retention rate of 331.1 mAh/g and ICE of 86.2% and capacity retention of 92.7% after 10-cycle measurement were shown.