DOI QR코드

DOI QR Code

Lithium - A Critical Metal for Clean Energy Technologies: A Comprehensive Review on Challenges and Opportunities for Securing Lithium from Primary and Secondary Resources

리튬-청정 에너지 기술의 핵심금속: 1차 및 2차 자원으로부터 리튬 확보를 위한 도전과 기회에 대한 종합적 고찰

  • Swain, Basudev (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Kim, Min-seuk (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Lee, Chan-Gi (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Chung, Kyeong Woo (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Lee, Jae-chun (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • ;
  • 김민석 (한국지질자원연구원 광물자원연구본부) ;
  • 이찬기 (고등기술연구원 융합소재연구센터) ;
  • 정경우 (한국지질자원연구원 광물자원연구본부) ;
  • 이재천 (한국지질자원연구원 광물자원연구본부)
  • Received : 2019.07.11
  • Accepted : 2019.08.19
  • Published : 2019.10.31

Abstract

Due to the increasing demand for clean energy, the consumption of lithium ion batteries (LIBs) is expected to grow steadily. Therefore, stable supply of lithium is becoming an important issue globally. Commercially, most of lithium is produced from the brine and minerals viz., spodumene, although various processes/technologies have been developed to recover lithium from other resources such as low grade ores, clays, seawaters and waste lithium ion batteries. In particular, commercialization of such recycling technologies for end-of-life LIBs being generated from various sources including mobile phones and electric vehicles(EVs), has a great potential. This review presents the commercial processes and also the emerging technologies for exploiting minerals and brines, besides that of newly developed lithium-recovery-processes for the waste LIBs. In addition, the future lithium-supply is discussed from the technical point of view. Amongst the emerging processes being developed for lithium recovery from low-grade ores, focus is mostly on the pyro-cum-hydrometallurgical based approaches, though only a few of such approaches have matured. Because of low recycling rate (<1%) of lithium globally compared to the consumption of lithium ion batteries (56% of lithium produced currently), processing of secondary resources could be foresighted as the grand opportunity. Considering the carbon economy, environment, and energy concerns, the hydrometallurgical process may potentially resolve the issue.

청정에너지에 대한 수요가 증가함에 따라 리튬이온배터리의 소비가 꾸준히 늘어날 것으로 예상된다. 따라서 전세계적으로 리튬의 안정적 공급이 중요한 문제가 되고 있다. 저품위 광석, 점토, 해수 그리고 폐리튬이온배터리 등과 같은 다양한 자원으로부터 리튬의 회수를 위한 공정과 기술들이 개발되어져 왔지만, 대부분의 리튬은 간수와 스포듀민 광석으로부터 상업적으로 생산되고 있다. 특히, 휴대폰과 전기자동차(EVs)를 포함한 여러 분야에서 발생하고 있는 사용 후 리튬이온배터리에 대한 재활용 기술들의 상용화는 많은 잠재력을 가지고 있다. 본 고찰은 폐리튬이온배터리에 대하여 새롭게 개발된 리튬 회수 공정과 더불어 광물과 간수를 이용하기 위한 상용공정 및 최신 기술들을 소개한다. 아울러 미래의 리튬 공급이 기술적인 관점에서 논의된다. 저품위 광석으로부터 리튬 회수를 위하여 개발되고 있는 최신공정들은 주로 건식+습식 제련에 기반을 둔 접근방법에 초점을 두고 있으며, 단지 몇몇 방법들만이 안정화 되었다. 리튬이온배터리의 소비(현재 생산되는 리튬의 56%)에 비교하여 리튬의 낮은 재활용율(1% 미만) 때문에 2차 자원의 처리는 굉장한 기회로서 앞을 내다보는 것일 수 있다. 또한 탄소경제, 환경과 에너지에 대한 우려를 생각해 볼 때, 습식제련공정이 이러한 이슈를 해결할 수 있을 것이다.

Keywords

References

  1. Taiebat, M. and Xu, M., 2019 : Synergies of four emerging technologies for accelerated adoption of electric vehicles: Shared mobility, wireless charging, vehicle-togrid, and vehicle automation, Journal of Cleaner Production, 230, pp.794-797. https://doi.org/10.1016/j.jclepro.2019.05.142
  2. Richa, K., Babbitt, C. W., Gaustad, G., and Wang, X., 2014 : A future perspective on lithium-ion battery waste flows from electric vehicles, Resources, Conservation and Recycling, 83, pp.63-76. https://doi.org/10.1016/j.resconrec.2013.11.008
  3. Grosjean, C., Miranda, P. H., Perrin, M., and Poggi, P., 2012 : Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry, Renewable and Sustainable Energy Reviews, 16, pp.1735-1744. https://doi.org/10.1016/j.rser.2011.11.023
  4. S wain, B., 2016 : Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review, Journal of Chemical Technology & Biotechnology, 91, pp.2549-2562. https://doi.org/10.1002/jctb.4976
  5. S wain, B., 2017 : Recovery and recycling of lithium: A review, Separation and Purification Technology, 172, pp.388-403. https://doi.org/10.1016/j.seppur.2016.08.031
  6. Kavanagh, L., Keohane, J., Garcia Cabellos, G., Lloyd, A., and Cleary, J., 2018 : Global Lithium Sources-Industrial Use and Future in the Electric Vehicle Industry: A Review, Resources, 7.
  7. Mohr, S. H., Mudd, G. M., and Giurco, D., 2012 : Lithium Resources and Production: Critical Assessment and Global Projections, Minerals, 2, pp.65-84. https://doi.org/10.3390/min2010065
  8. Brenner , A., 1963 : Electrodeposition of alloys: principles and practice. Academic Press.
  9. Hamzaoui, A. H., M'Nif, A., Hammi, H., and Rokbani, R., 2003 : Contribution to the lithium recovery from brine, Desalination, 158, pp.221-224. https://doi.org/10.1016/S0011-9164(03)00455-7
  10. Goonan, T. G., 2012 : Lithium use in batteries: U.S. Geological Survey Circular 1371, U.S. Geological Survey, Reston, Virginia: 2012.
  11. Lupi, C. and Pasquali, M., 2003 : Electrolytic nickel recovery from lithium-ion batteries, Minerals Engineering, 16, pp.537-542. https://doi.org/10.1016/S0892-6875(03)00080-3
  12. Contestabile, M., Panero, S., and Scrosati, B., 1999 : A laboratory-scale lithium battery recycling process1, Journal of Power Sources, 83, pp.75-78. https://doi.org/10.1016/S0378-7753(99)00261-X
  13. Contestabile, M., Panero, S., and Scrosati, B., 1999 : A laboratory-scale lithium battery recycling process1This work has been presented as an invited talk at the 4th International Battery Recycling Congress, Hamburg, Germany, 1-3 July, 1998.1, Journal of Power Sources, 83, pp.75-78. https://doi.org/10.1016/S0378-7753(99)00261-X
  14. Contestabile, M., Panero, S., and Scrosati, B., 2001 : A laboratory-scale lithium-ion battery recycling process, Journal of Power Sources, 92, pp.65-69. https://doi.org/10.1016/S0378-7753(00)00523-1
  15. Sadoway , D., 1998 : Toward new technologies for the production of lithium, JOM, 50, pp.24-26. https://doi.org/10.1007/s11837-998-0027-x
  16. Bradley, D. and Jaskula, Brian. 2014 : Lithium-For Harnessing Renewable Energy: U.S. Geological Survey Fact Sheet 2014-3035, U.S. Geological Survey
  17. USGS. 2019 : U.S. Geological Survey, 2019, Mineral commodity summaries 2019: U. S. Geological Survey, U.S. Department of the Interior, U.S. Geological Survey, U.S. Geological Survey, Reston, Virginia
  18. Bohlsen, M., 2016 : The Lithium Boom - An Analysis Of Future Demand Vs. Supply. http://seekingalpha.com/article/3984654-lithium-boom-analysis-future-demandvs-supply
  19. www.statista.com. 2019. Projection of total worldwide lithium demand from 2017 to 2025. https://www.statista.com/statistics/452025/projected-totaldemand-for-lithium-globally/
  20. Li, J., Du, Z., Ruther, R. E., AN, S. J., David, L. A., et al., 2017 : Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries, JOM, 69, pp.1484-1496. https://doi.org/10.1007/s11837-017-2404-9
  21. AGENCY , I. E. 2016 : Global EV Outlook 2016 Beyond one million electric cars. https://www.iea.org/publications/freepublications/publication/Global_EV_Outlook_2016.pdf
  22. Ulvestad, A., 2018 : A Brief Review of Current Lithium Ion Battery Technology and Potential Solid State Battery Technologies. https://arxiv.org/abs/1803.04317
  23. Fortuna, C., 2018 : Batteries, Not The Model 3, Are The Real Keys To Tesla's Future Success. https://cleantechnica.com/2018/02/12/batteries-not-model-3-real-keysteslas-future-success/
  24. Olivetti, E. A., Ceder, G., Gaustad, G. G., and Fu, X., 2017 : Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals, Joule, 1, pp.229-243. https://doi.org/10.1016/j.joule.2017.08.019
  25. Bo Normark, A. F., 2014 : How can batteries support the EU electricity network?
  26. http://www.marketwatch.com. 2016. Lithium-ion Battery Market i s Projected t o Reach US $ 77. 42 bn in 2 024; Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2016 - 2024: TMR. http://www.marketwatch.com/story/lithium-ion-battery-market-is-projected-to-reach-us-7742-bn-in-2024-global-industryanalysis-size-share-growth-trends-and-forecast-2016---2024-tmr-2016-09-19
  27. Jaskula, B. W., 2017 : U.S. Geological Survey, Mineral Commodity Summaries, January 2017. U.S. Geological Survey, Reston, Virginia: U.S. Geological Survey, U.S. department of the Interior. pp.100-101.
  28. Gagno, G., 2016 : Lithium on the rise. http://www.rockstone-research.com/index.php/en /news/816-Lithium-onthe-rise
  29. Swain, B., 2018 : Cost effective recovery of lithium from lithium ion battery by reverse osmosis and precipitation: a perspective, Journal of Chemical Technology & Biotechnology, 93, pp.311-319. https://doi.org/10.1002/jctb.5332
  30. Schulz, K. J., DeYoung, J. H., Seal, R. R., and Bradley, D. C., 2017 : Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply.
  31. Graedel, T. E., 2015 : Recycling rates of metals, a status report. http://www.unep.org/resourcepanel/Portals/24102/PDFs/Metals_Recycling_Rates_110412-1.pdf
  32. BGS, N., 2016 : Commodit Profile : Lithium profile. https://www.bgs.ac.uk/downloads/start.cfm?id=3100
  33. Tran, T. and Luong, V. T., 2015 : Chapter 3 - Lithium Production Processes. In Lithium Process Chemistry, ed. A Chagnes, J Swiatowska:81-124. Amsterdam: Elsevier. Number of 81-124 pp.
  34. Talens Peiro, L., Villalba Mendez, G., and Ayres, R. U., 2013 : Lithium: Sources, Production, Uses, and Recovery Outlook, JOM, 65, pp.986-996. https://doi.org/10.1007/s11837-013-0666-4
  35. F. Margarido, N. V., F. Durao, C. Guimaraes, and C. A. Nogueira, 2014 : Minero-metallurgical processes for lithium recovery from pegmatitic ores, Comunicacoes Geologicas, 101, pp.795-798.
  36. Mast, E., 1989 : Lithium Production from Spodumene. McGill University, Montreal Canada.
  37. F. Margarido, N. Vieceli, F. Durao, C. Guimaraes, and Nogueira, C. A., 2014 : Minero-metallurgical processes for lithium recovery from pegmatitic ores Comunicacoes Geologicas 101, pp.795-798.
  38. Peltosaari, O., Tanskanen, P., Heikkinen, E.-P., and Fabritius, T., 2015 : ${\alpha}{\rightarrow}{\gamma}{\rightarrow}{\beta}$-phase transformation of spodumene with hybrid microwave and conventional furnaces, Minerals Engineering, 82, pp.54-60. https://doi.org/10.1016/j.mineng.2015.04.012
  39. Choubey, P. K., Kim, M.-s., Srivastava, R. R., Lee, J.-c., and Lee, J.-Y., 2016 : Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources, Minerals Engineering, 89, pp.119-137. https://doi.org/10.1016/j.mineng.2016.01.010
  40. An, J. W., Kang, D. J., Tran, K. T., Kim, M. J., Lim, T., and Tran, T., 2012 : Recovery of lithium from Uyuni salar brine, Hydrometallurgy, 117-118, pp.64-70. https://doi.org/10.1016/j.hydromet.2012.02.008
  41. De-Leon, S., 2018 : Lithium Ion Battery Recycling Market 2018.
  42. Ellis, T. W. and Mirza, A. H., 2016 : Battery Recycling: defining the market and identifying the technology required to keep high value materials in the economy and out of the waste dump. http://www.nist.gov/tip/wp/pswp/upload/245_battery_recycling_defining_the_market.pdf
  43. 2014. EUROPEAN LI-ION BATTERY ADVANCED MANUFACTURING FOR ELECTRIC VEHICLES. https://elibama.files.wordpress.com/2014/10/v-d-batteries-recycling1.pdf
  44. Kim, D.-S., Sohn, J.-S., Lee, C.-K., Lee, J.-H., Han, K.-S., and Lee, Y.-I., 2004 : Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries, Journal of Power Sources, 132, pp.145-149. https://doi.org/10.1016/j.jpowsour.2003.09.046
  45. Trager, T., Friedrich, B., and Weyhe, R., 2015 : Recovery Concept of Value Metals from Automotive Lithium-Ion Batteries, Chemie Ingenieur Technik, 87, pp.1550-1557. https://doi.org/10.1002/cite.201500066
  46. Zhang, P., Yokoyama, T., Itabashi, O., Suzuki, T. M., and Inoue, K., 1998 : Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries, Hydrometallurgy, 47, pp.259-271. https://doi.org/10.1016/S0304-386X(97)00050-9
  47. Nguyen, V. T. L., Jae-Chun Jeong, Jinki Kim, Byung-Su Pandey, B. D., 2015 : The Separation and Recovery of Nickel and Lithium from the Sulfate Leach Liquor of Spent Lithium Ion Batteries using PC-88A, Korean Chemical Engineering Research, 53, pp.137-144. https://doi.org/10.9713/kcer.2015.53.2.137
  48. C. K. Lee, J. S. S., and K. I. Rhee, 2014 : Chemical extractin of lithium from $LiCoO_2$ using oxalic acid. Proc. Global Symposium on recycling, waste treatment and clean technology, REWAS 2004, Madrid, Spain, 1.
  49. Nexant-Inc., 2018 : Technoeconomics-Energy & Chemicals (TECH) TECH 2018S11 Lithium Extraction Technologies. https://www.nexantsubscriptions.com/file/133644/download?token=dSnzZcCL
  50. May, J. T., Witkowsky, D. S., and Seidel, D. C., 1980 : Extracting lithium from clays by roast-leach treatment, Report of Investigation 8432, Dept. of the Interior, Bureau of Mines.
  51. Davidson, C. F., 1981 : Recovery of lithium from clay by selective chlorination, Report of Investigation 8523, U.S. Dept. of the Interior, Bureau of Mines, Pittsburgh, Pa, USA.
  52. Bell, T., 2019 : An Overview of Commercial Lithium Production. https://www.thebalance.com/lithium-production-2340123.
  53. Garrett, D. E., 2004 : Handbook of Lithium and Natural Calcium Chloride. Elsevier Science.
  54. Bohner , H. O., Light metals, 1985 : proceedings of the technical sessions sponsored by the TMS Light Metals Committee at the 114th annual meeting, New York, New York, February 24-28, 1985, Warrendale, Pa.: Metallurgical Society of AIME.
  55. Medina, L. and El-Naggar, M. A. A., 1984 : An alternative method for the recovery of lithium from spodumene, MTB, 15, pp.725-726. https://doi.org/10.1007/BF02657295
  56. Teresa Brown, A. W., Naomi Idoine, Gus Gunn, Richard A Shaw, Debbie Raymer. 2016 : Commodity Profile, Lithium profile, British geologicala survey, Keyworth, Nottingham, UK.
  57. Saltworks, Lithium Brine Extraction Technologies & Approaches, https://www.saltworkstech.com/articles/lithium-brine-extraction-technologies-and-approaches, June 23, 2019.
  58. Xu, J., Thomas, H. R., Francis, R. W., Lum, K. R., Wang, J., and Liang, B., 2008 : A review of processes and technologies for the recycling of lithium-ion secondary batteries, Journal of Power Sources, 177, pp.512-527.. https://doi.org/10.1016/j.jpowsour.2007.11.074