• Title/Summary/Keyword: Electric Conductivity

Search Result 956, Processing Time 0.029 seconds

Determination of Freshness of Fish Meat using Electric Conductivity Meter (전기전도도를 이용한 어육의 선도판정)

  • LEE Byeong-HO
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.5
    • /
    • pp.219-227
    • /
    • 1989
  • A new devised conductivity meter was used in the rapid and convinient determination of freshness of fish meats. Electric conductivity of frozen fishes like cod, tuna, flounder, Alaksa pollock were demonstrated about $6,100\pm200{\mu}u$ at the beginning of spoilage showed VBN content of $30\~35mg\%$ while that of fresh meat of yellow tail, rock trout, and mackerel were in the range of $5,100\~5,400{\mu}u$. The relationship between electric conductivity and freshness as measured by VBN content was direct proportion during the deterioration of fish meat. It was presumed that electric conductivity change of red muscled fish was more temperature dependence than that of white muscled fishes. $Q_{10}$ value of mackerel meat was about 2.34 at the temperature ranged from 15 to $30^{\circ}C(\pm1^{\circ}C)$). The electric conductivity obtained with conductivity meter could be a valuable criteria for the freshness test of fish meat determining in 10 seconds by handy compact portable meter.

  • PDF

Electric Conductivities of LaCl3-KCl Binary Melts (용융 LaCl3-KCl 2성분계 혼합염의 전기전도도)

  • Kim, Kiho
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.48-52
    • /
    • 2014
  • Electric conductivities of $LaCl_3$-KCl binary melts have been measured by the Kohlausch bridge method over the range from their liquidus temperatures to about 1280 K. The electric conductivity increased with the content of KCl for all over the composition range of binary melts. The composition dependence of the electric conductivity and molar conductivity for the binary melt showed a non-linear relation from the additivity line, and the deviation showed a maximum value at about 60 mol.% KCl. The deviation implies the existence of complex ion of $LaCl^{4-}$ in the melt. Activation energy for electric conductivity of the binary melts decreased monotonously with increasing content of KCl.

Electric Conductivities of LaC $l_3$-LiCl Binary Melts (용융 LaC $l_3$-LiCl 2성분계 혼합염의 전도도)

  • Kim Ki-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.301-306
    • /
    • 2004
  • Electric Conductivities of $LaCl_3$-LiCl binary melts have been measured by the Kohlausch bridge method over the range of their liquidus temperatures to about 1200 K. The electric conductivity increases with the content of LiCl for all over the composition range of binary melts. Composition dependence of the electric conductivity and molar conductivity for the binary melt shows a non-linear relation from the additivity line, and the deviations displays a maximum value at about 60 mol % LiCl. This suggest the existence of the complex ion of$ LaCl_{4}^{-}$ in the melt. Activation energy for electric conductivity of the binary melts decrease monotonously with increasing content of LiCl.l.

Comparison of electric conductivity of nano composites for bipolar plate of PEM fuel cell (PEM 연료전지 분리판용 나노복합재의 전도성 비교)

  • Lee H.S.;Jung W.K.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1136-1139
    • /
    • 2005
  • As alternative materials for bipolar plate of PEM Fuel Cells, carbon composites were fabricated by compression molding. In this study, four types of nano particles, such as Carbon nanotubes, Carbon black, GX-15 and P-15 were mixed with epoxy resin to provide electric conductivity and structural properties. By increasing pressure during molding and volume ratio of nano particles, the physical contact among particles was improved resulting in increased electric conductivity. Surface resistance test showed, P-15 particles have the highest electric conductivity.

  • PDF

A study on electric field computation of dielectric analysis model with the conductivity on its surface (표면에 도전율을 갖는 유전체 해석모델의 전계계산에 관한 연구)

  • Kim, Hyeong-Seok;Lee, Ki-Sik;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.6-8
    • /
    • 1995
  • In this paper, we study the computation of the electric field of dielectric analysis models with the conductivity on its surface. The finite element formulation describes a sinusoidal electrodynamic field computation. One term is added to this functional in order to take the conductivity on its surface into accounts. The electric field computations of the dielectric analysis model are done first with the surface conductivity and second with the volume conductivity. Also, it is shown that a surface conductor with sufficiently large conductivity can be substituted with a floating equipotential line. This method is applied to an insulator in arbitrary shape with the conductivity on its surface.

  • PDF

Synthesis of amorphous calcium carbonate by gas-liquid reaction and its crystallization

  • Ahn Ji-Whan;Kim Hyung-Seok;Park Jin-Koo;Kim Ka-Yeon;Yim Going;Joo Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.654-657
    • /
    • 2003
  • We obtained amorphous calcium carbonate through the carbonation reaction of $Ca(OH)_2$, and through this reaction, observed changes in particle shape and phase by electric conductivity, XRD and TEM analysis. According to the result of the analysis, in the first declining stage of electric conductivity, amorphous calcium carbonate that has formed is coated on the surface of $Ca(OH)_2$ and obstructs its dissolution, and in the first recovery stage of electric conductivity, amorphous calcium carbonate is dissolved and re-precipitated and forms chains of fine calcite particles linearly joined. In the second decline of conductivity, viscosity increases due to the growth of chains of calcite particles, and finally the calcite particles are dissolved and separated into colloidal crystalline calcite, thereby increasing electric conductivity again.

  • PDF

Analysis of Groundwater Conductivity and Water Temperature Changes in Greenhouse Complex by Water Curtain Cultivation (수막용수 사용으로 인한 시설재배지역의 지하수 수온과 전기전도도 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.93-103
    • /
    • 2023
  • This study aimed to analyze the impact of water curtain cultivation in the greenhouse complexes on groundwater's electric conductivity and water temperature. The greenhouse complexes are mainly situated along rivers to secure water resources for water curtain cultivation. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. As a result of analyzing the electric conductivity and water temperature, the following differences were found in the observed characteristics by region. 1) The electric conductivity and water temperature of the riverside area, where the permeability is high and close to rivers, showed a constant pattern of annual changes due to the influence of river flow and precipitation. 2) The flat land in general agricultural areas showed general characteristics of bedrock observation in the case of water temperature. Still, it seemed more affected by the surrounding well's water use and water quality. The electric conductivity did not show any particular trend and was influenced by the surrounding environment according to the location of each point.

A novel preparation of polyaniline in presence electric and magnetic fields

  • Hosseini, Seyed Hossein;Gohari, S. Jamal
    • Advances in materials Research
    • /
    • v.2 no.4
    • /
    • pp.209-219
    • /
    • 2013
  • We have described primary studies on conductivity and molecular weight of polyaniline separately in the electric and magnetic fields when it is used in a field effect experimental configuration. We report further studies on doped in-situ deposited polyaniline. First we have chemically synthesized polyaniline by ammonium peroxodisulfate in acidic aques and organic solutions at different times. Then we measured mass and conductivity and obtained the best time of polymerizations. In continue, we repeated these reactions separately under different electric and magnetic fields in constant time and measured mass and conductivity. The polyaniline is characterized by gel permeation chromatography (GPC), UV-Visible spectroscopy and electrical conductivity. High molecular weight polyanilines are synthesized under electric field, $M_w$ = 520000-680000 g/mol, with $M_w/M_n$ = 2-2.5. The UV-Visible spectra of polyanilines oxidized by ammonium peroxodisulfate and protonated with dodecylbenzenesulfonic acid (PANi-DBSA), in N-methylpyrolidone (NMP), show a smeared polaron peak shifted into the visible. Electrical conductivity of polyanilines has been studied by four-probe method. The conductivity of the films of emeraldine protonated by DBSA cast from NMP are higher than 500 and 25 S/cm under 10 KV/m of potential) electric field and 0.1 T magnetic field, respectively. It shows an enhanced resistance to ageing too. By the next steps, we carried chemical polymerization at the best electric and magnetic fields at different times. Finally, resulted in finding the best time and amount of the fields. The longer polymerization time and the higher magnetic field can lead to degradation of polyaniline films and decrease conductivity and molecular mass.