• Title/Summary/Keyword: Electric Cars

Search Result 196, Processing Time 0.027 seconds

Study on Chemical Stabilities with R-1234yf Refrigerant of Polyol Ester Refrigerant Oil for Electric Vehicles (전기 자동차용 폴리올 에스테르계 냉동기유의 R-1234yf 냉매와의 적합성 연구)

  • Hong, J.S.;Chung, K.W.;Kim, N.K.;Shin, J.H.;Kim, Young Woon;Lee, E.H.;Go, B.S.;Hwang, S.Y.
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.139-146
    • /
    • 2020
  • Global warming has led to an increase in demand of eco-friendly vehicles, such as electric cars, for reducing greenhouse gas emissions, and especially, regulating carbon dioxide generation. In addition, electric vehicles are equipped with an electric drive-type hermetic scroll compressor and a refrigerant, which exhibit current and future trends of using environmentally friendly refrigerants, including R-1234yf. In this study, polyol ester-based refrigeration oils are prepared via condensation esterification of polyol and fatty acids. The oils can be combined with R-1234yf refrigerant for applications in air conditioning and cooling systems of electric vehicles. The structure of synthetic polyol esters is confirmed via 1H-NMR and FT-IR spectrum analysis, and the composition of the polyol ester is analyzed via gas chromatogram analysis. Furthermore, kinematic viscosity, viscosity index, total acid value, pour point, and color are analyzed as fundamental physical properties of the synthetic polyol esters. The compatibility and chemical stability of the synthetic polyol ester combined with the R-1234yf refrigerant are obtained via high temperature and high pressure oil-resistant refrigerant tests. The changes in the oil color and catalyst activity are observed before and after the experiment to determine whether it is suitable as a refrigerator oil.

Measures for the safety of an electric car in case(Seoul metro) gives up the subway operation (도시철도(서울메트로) 영업운전을 포기할 경우 안전대책방안)

  • Jang, Young-Gil;Yi, Gye-Jean;Yoon, Sung-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1852-1857
    • /
    • 2007
  • Since the introduction of the subway, remarkable progress has been made so as to be able to produce a Korean standard electric car, but it is rather regretful that an engineer who is not aware of laws on a railroad or involved in a railroad designed a electric car. In the future, the electric cars with up-to-date technology must be introduced, but there are many difficulties in such introduction. For example, the operation of simultaneously moving and running scores of subway trains must comply with Regulation on Railroad Train Operation, so, close examination of these problems is required. The existing electric car, as does a motorcar, varies a little with makers in the type and characteristics. This paper is intended to discuss about the device and measures for reinforcing a function of Daewoo GEC electric car that was introduced by technical tie-up from England, which accounts for the most ratio in this field

  • PDF

A Study on the Industry Platform of Electric Vehicles (전기자동차의 산업플랫폼에 대한 연구)

  • Chung, Sunyang;Cho, Hyeongrye;Choi, Jinho
    • Journal of Korea Technology Innovation Society
    • /
    • v.16 no.2
    • /
    • pp.530-558
    • /
    • 2013
  • New strategies in the automobile industry have been required with the advent of new green car era. This study examines how to develop the electric automobile industry among green cars effectively. It's necessary to change fragmentary relationship-based analysis focusing on stakeholders in the existing automobile industry into platform-based analysis. The purpose of this study aims to define an analytical framework for adopting a more developed industry platform. To this end, the following major issues are analyzed. First, what is the definition of industrial platform, why is it needed? Second, who participate in industry platform, what are the working factors of the platform? Third, who are participants in industry platform applicable to electric vehicle market and what are the working factors for electric vehicle industry platform? Fourth, this researcher derives analytic framework of electric vehicle industry platform based on related cases and discusses applicable measures for the framework.

  • PDF

Numerical Analysis of Electromagnetic Radiation Characteristics by High Voltage and General Cables for Fuel Cell Electric Vehicle (FCEV) (수소 연료전지 차량용 고전압 케이블과 일반 케이블에 의한 차량 전자파 방사 특성 수치해석 연구)

  • Lee, Soon-Yong;Seo, Won-Bum;Lim, Ji-Seon;Choi, Jae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.152-160
    • /
    • 2011
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) which is consisted of many motors in water pump, air blower, and hydrogen recycling pump as well as inverters for these motors is essential. Furthermore, there are also electric systems for entertainment, information, and vehicle control such as navigation, broadcasting, vehicle dynamic control systems, and so on. Since these systems are connected by high voltage or general cables, EMC (Electromagnetic compatibility) analysis for high voltage and general cable of FCEV is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields by high voltage and general cables for FCEVs is studied. From numerical analysis results, total time harmonic electromagnetic field strength from high voltage and general cables have difference of 13~16 dB due to ground effect by impedance matching. The EMI results of FECV at 10 m distance shows difference of 41 dB at 30 MHz and 54 dB at 230 MHz compared with only general cable routing.

Assessment of Performance of Motor System for City Bus (노선버스용 구동모터 시스템의 성능평가)

  • Lee, Yoon-Ki;Myong, Kwang-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.189-196
    • /
    • 2011
  • Recently, research and development of a hybrid system for passenger cars as well as for heavy-duty vehicles has become more intensive. An electric powertrain system using an electric motor can replace conventional gasoline and diesel engines. The electric motor has a higher efficiency, better acceleration performance, and is more comfortable than conventional powertrain systems; however, new methods for assessing power performance and energy convergence efficiency have to be investigated because the characteristics of an electric motor are entirely different from those of an internal combustion engine (ICE). In this study, an experiment was carried out on a motor (PMSM: Permanent Magnet Synchronous Motor) test bench. One simple driving mode and four other driving modes identified from real-world driving data of a city bus were selected to perform the experiment on the motor test bench. Then, methods for assessing the acceleration performance, energy convergence efficiency, regenerative effect, etc., were investigated. It was found that the energy efficiency of PMSM was about 90% and that 40% of demand energy was regenerated.

Development of Urban Driving Cycle for Performance Evaluation of Electric Vehicles Part II: Verification of Driving Cycle (전기자동차 성능평가를 위한 도심 주행 모드 개발 Part II: 주행 모드 검증)

  • Jeong, Nak-Tak;Yang, Seong-Mo;Kim, Kwang-Seup;Choi, Su-Bin;Wang, Maosen;You, Sehoon;Kim, Hyunsoo;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • Recently, due to various environmental problems such as global warming, increases of international oil prices, exhaustion of resource, a paradigm of world automobile market is rapidly changing from conventional vehicles using internal combustion engine to eco-friendly vehicles using electric power such as EV, HEV, PHEV and FCEV. Generally, in order to measure fuel consumption and pollutant emissions of cars, chassis dynamometer tests are performed on various driving cycles before actual driving test. There are many driving cycles for performance evaluation of conventional vehicles. However, there is a lack of researches on driving cycle for EV. In this study, the urban driving cycle for performance evaluation of electric vehicles was developed. This study is composed of two parts. In the part 1, the urban driving cycle 'GUDC-EV(Gwacheon-city Urban Driving Cycle for Electric Vehicles)' was developed by using driving data, which were obtained through actual driving experiment, and statistic analysis with chronological table. In this paper part 2, in order to verify the developed driving cycle GUDC-EV, virtual EV platforms were configured and simulations were performed with actual driving data using In addition, simulation results were compared with existing driving cycles such as FTP-72, NEDC and Japan 10-15.

The Effect Analysis of NEV(Neighborhood Electric Vehicle) Driving - with VISSIM Simulation - (저속형 전기자동차 주행시 시스템 영향분석 - VISSIM 시뮬레이션을 이용하여 -)

  • Yoon, Tae-Kwan;Baik, Nam-Cheol;Jung, In-Taek
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.77-82
    • /
    • 2012
  • To share the lanes with conventional vehicles, traffic operation strategy is needed for NEV (Neighborhood Electric Vehicle). Because NEV cannot accelerate sharply as fast as common car include gasoline, diesel and LPG cars, they may interrupt traffic conditions and make traffic delay. After green lights turn on, all vehicles run through the street including NEV, but NEV have a maximum speed which is 50km/h. It can be an obstacle for following vehicles and will make traffic delay of the intersection. In this reason, we need to organize traffic systems like queue jump with priority traffic signal. To analyze the necessity for NEV road operations, we simulate three scenarios in congested and non-congested conditions. First is that we examine the condition which is mixed NEV and cars on the road, the second one is that we set up lane only NEV can accepted in simulation and last one is making queue jump lane and providing priority signal for NEV. In conclusion, we can conclude that making lane only for NEV is effective to improve travel speed when rate of NEVs is over 20%. Also queue jump lane and priority signal cannot make good effect to intersection delay and average speed.

The study on Harmonic Current Generated on Power Supply Station in(for) Conventional line and The Review on Effect of facility reducing Harmonic Current. (기존선 변전소에서의 고조파 발생현황과 저감설비 설치 효과 검토)

  • Park Sang-Ock;Lee Jong-Woo;Kwon Sam-Young;Lee Chang-Moo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1309-1315
    • /
    • 2004
  • The harmonic current originated from electric cars will be cause of electromagnetic interference along adjacent communication cables and troubles with signaling. It will also cause overheating in power capacitor and malfuction in protection relay. Therefore, it brought actual measurement of harmonic current by each operation mode. Because the result exceeded the value prescribed by Korea Electric Power Corporation, we constructed facilities reducing harmonic current on overloaded part at each power supply station located in conventional line (Guro, Kyungsan, and Milyang) as an optimal alternative. Then, this study compared and analyzed the reducing effect before and after constructing facility.

  • PDF

Power Line Communication for Electronic Vehicle Systems (전기차 시스템을 위한 전력선 통신)

  • Park, Jae Jung;Kim, Yun Hyun;Kim, Jin Young;Seo, Jong Kwan;Lee, Jae Jo
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.13-17
    • /
    • 2012
  • In recent years, type of the car is changing. Instead of cars that use internal combustion engines, we will use mainly eco-friendly electric vehicles. However, the utilization of electric vehicles brings enormous increase of power consumption. Thus, efficient power management and intelligent power consumption is required. Demand response can be effective measures of power consumption. In this paper, we present demand response technology applications, communication method, PLC application and simulation result.

Analysis for Catenary System with Focus on Abnomal Conditions on Honam High Speed Line (호남고속철도 전차선로의 이상 상태 분석)

  • Jun, Jaegeun;Shin, Seungkwon;Jung, Hosung;Na, Kyungmin;Park, Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • The overhead contact line (OCL) is a key piece of equipment for transmitting electrical energy to the pantograph of rail cars. Recently, a 400 km/h OCL was applied to the Honam high-speed line, and its performance was examined by running HEMU-430X. For the study, we analyzed the current of catenary wire concurrently while running HEMU-430X in the Honam high-speed line. Specifically, this study recorded the currents for each speed during operation of the railway vehicle. The analysis of the frequency of line current showed generation of third-harmonics, 15th-harmonics, 17th-harmonics, and 19th-harmonics. The current of catenary wire is a basic technology assessment used to determine the electrical safety of electric railway systems, and it can be used as a technology for analyzing circulating currents generated in the current configuration, as well as for analyzing electric fatigue of the OCL components.