• Title/Summary/Keyword: Effective discharge energy

Search Result 130, Processing Time 0.024 seconds

A study on the RE/DC discharge cleaning for high vacuum SUS chamber (RF/DC 방전을 이용한 고 진공용SUS 용기세정에 관한 연구)

  • 김정형;임종연;서인용;정광화
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.298-302
    • /
    • 2001
  • Cleaning effect of RF/DC discharge to clean the surface of vacuum chamber was studied for various discharge conditions. Glow discharge cleaning without baking reduced the outgassing rate to 1/2, which was similar to that after the only baking treatment alone. Glow discharge cleaning treatment with baking improved the cleaning efficiency and then the outgassing rate was remarkably reduced to 1/20. It was found that the ion energy and the ion density were important factors in cleaning the surface. RF discharge cleaning was more effective than BC discharge cleaning.

  • PDF

Novel energy recovery circuit using an address voltage source

  • Yi, Kang-Hyun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.416-418
    • /
    • 2008
  • Cost effective and high efficiency energy recovery circuit (ERC) using an address voltage source is proposed. Different from prior ERC, the proposed circuit uses a voltage source to charge a panel and a current source to discharge the panel. As a result, it can be achieved zero voltage switching (ZVS) of switches in H-bridge inverter and zero current switching (ZCS) of switches of the ERC. Moreover, the proposed ERC can obtain high efficiency, high performance and the decrease of the cost and the size.

  • PDF

Scoping Calculations on Criticality and Shielding of the Improved KAERI Reference Disposal System for SNFs (KRS+)

  • Kim, In-Young;Cho, Dong-Keun;Lee, Jongyoul;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.37-50
    • /
    • 2020
  • In this paper, an overview of the scoping calculation results is provided with respect to criticality and radiation shielding of two KBS-3V type PWR SNF disposal systems and one NWMO-type CANDU SNF disposal system of the improved KAERI reference disposal system for SNFs (KRS+). The results confirmed that the calculated effective multiplication factors (keff) of each disposal system comply with the design criteria (< 0.95). Based on a sensitivity study, the bounding conditions for criticality assumed a flooded container, actinide-only fuel composition, and a decay time of tens of thousands of years. The necessity of mixed loading for some PWR SNFs with high enrichment and low discharge burnup was identified from the evaluated preliminary possible loading area. Furthermore, the absorbed dose rate in the bentonite region was confirmed to be considerably lower than the design criterion (< 1 Gy·hr-1). Entire PWR SNFs with various enrichment and discharge burnup can be deposited in the KRS+ system without any shielding issues. The container thickness applied to the current KRS+ design was clarified as sufficient considering the minimum thickness of the container to satisfy the shielding criterion. In conclusion, the current KRS+ design is suitable in terms of nuclear criticality and radiation shielding.

Charge and Discharge Characteristics of Microencapsulated Hydrogen Storage Alloy Electrodes for Secondary Batteries (마이크로캡슐화한 축전지용 수소저장합금 전극의 충·방전 특성)

  • CHOI, Seong-Soo;CHOI, Byung-Jin;YE, Byung-Joon;KIM, Dai-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.3 no.2
    • /
    • pp.45-54
    • /
    • 1992
  • An applicability microencapsulation, using electroless copper plating, of hydrogen storage alloy powder as an anode material for nickel-hydrogen secondary batteries was investigated. Alloys employed were $LaNi_{4.7}Al_{0.3}$ and $MmNi_{4.5}Al_{0.5}$(Mm=mischmetal) which have an appropriate equilibrium pressure and capacity. The microencapsulation of the alloy powder was found to accelerate initial activation of electrodes and to increase capacity which is about 285mAh/g for $LaNi_{4.7}Al_{0.3}$. In addition, other charge and discharge characteristics, such as polarization and flatness of charge and discharge potential, were improved due to the role of copper layer as a microcurrent collector and an oxidation barrier of the alloy powder. $MmNi_{4.5}Al_{0.5}$ alloy showed lower capacity than $LaNi_{4.7}Al_{0.3}$ because of higher equilibrium pressure. Cyclic characteristics of both alloys were somewhat poor because of mainly shedding and partial oxidation of alloy powder during the cycling. However, it was considered that the microencapsulation method is effective to improve the performances of the hydrogen storage alloy electrodes.

  • PDF

A Study on the Characteristics of Ozonizers and Implementation of a Monitoring System (오존발생기의 특성 연구 및 모니터링 시스템 구축)

  • 김용철;김규식;최주엽
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.460-466
    • /
    • 2001
  • The oxidizing power of ozone is the greatest of all commercially available oxidizers and thus ozone is taking the place of chlorine for water treatment. For energy-effective treatment of water, ozone should be generated in high concentration. A silent glow discharge ozonizer is high effective in industrial aspect and thus is the most widely used. We found that the key parameters associated with the ozone generation rate are the driving voltage of the discharger, the discharge rate and the temperature of the ozone generation tube. For an easy control of these parameters, we build a monitoring system with graphical user interface. This system is based on Windows-98 PC, programmed with C++ and LabView.

  • PDF

Development of High Performance Ozone Generating Controller (다중 펄스 방식에 의한 고성능 오존발생 제어장치 개발)

  • 이홍희;김형준
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.226-226
    • /
    • 2003
  • When an excessive voltage is applied to the discharge gap in ozone generator, the discharge room temperature becomes higher. As is well own, the efficiency of the ozone generation is deteriorated by the excessively hot temperature because of the decomposition reaction. In this paper, the simple small capacity ozone generating controller has been introduced, which provides effective and stable silent discharge characteristics over wide range input power. The proposed power controller has two important advantages, which imply that the production rate of ozone can be controlled linearly according to the delivered power and the surplus energy is recovered to the source. The experimental results are given to verify the performance of the pre proposed controller.

Development of High Performance Ozone Generating Controller (다중 펄스 방식에 의한 고성능 오존발생 제어장치 개발)

  • 이홍희;김형준
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.5
    • /
    • pp.226-230
    • /
    • 2003
  • When an excessive voltage is applied to the discharge gap in ozone generator, the discharge room temperature becomes higher. As is well own, the efficiency of the ozone generation is deteriorated by the excessively hot temperature because of the decomposition reaction. In this paper, the simple small capacity ozone generating controller has been introduced, which provides effective and stable silent discharge characteristics over wide range input power. The proposed power controller has two important advantages, which imply that the production rate of ozone can be controlled linearly according to the delivered power and the surplus energy is recovered to the source. The experimental results are given to verify the performance of the pre proposed controller.

A Study on Behaviour and Characteristics of Spark Discharge in Spark Ignition System (스파크 점화 시스템의 방전 거동 및 특성에 관한 연구)

  • Lee Myung Jun;Hall Matt;Ezekoye Ofodike A.;Matthews Ron;Chung Sung Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.100-108
    • /
    • 2006
  • Time-resolved current and voltage measurements for an inductive automotive spark system were made. Also presented are measurements of the total energy delivered to the spark gap. The measurements were made in air for a range of pressures from 1-18atm, at ambient temperatures. The measured voltage and current characteristics were found to be a function of many ignition parameters; some of these include: spark gap distance, internal resistance of the spark plug and high tension wire, and pressure. The voltages presented were measured either at the top of the spark plug or at the spark gap. The measurements were made at different time resolutions to more accurately resolve the voltage and current behavior throughout the discharge process. This was necessary because the breakdown event occurs on a time scale much shorter than the arc and glow phases. The breakdown, are, and glow voltages were found to be functions of spark plug resistance, gas density, and spark plug gap as expected from the literature. Spark duration was found to decrease as either pressure or gap was increased. The transition from the arc to glow phase is usually distinguished by a sudden rise in the voltage across the gap. At pressures above about 7atm this transition was not observed suggesting that a glow phase was not present. Energy delivered to the gap increased with increasing pressure. The effective resistance of the spark gap during discharge was about twice as large for the glow phase as the arc phase.

A Comparative Study of Transistor and RC Pulse Generators for Micro-EDM of Tungsten Carbide

  • Jahan, Muhammad Pervej;Wong, Yoke San;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.3-10
    • /
    • 2008
  • Micro-electrical discharge machining (micro-EDM) is an effective method for machining all types of conductive materials regardless of hardness. Since micro-EDM is an electro-thermal process, the energy supplied by the pulse generator is an important factor in determining the effectiveness of the process. In this study, an investigation was conducted on the micro-EDM of tungsten carbide (WC) to compare the performance of transistor and resistance/capacitance (RC) pulse generators in obtaining the best quality micro-hole. The performance was measured by the machining time, material removal rate, relative tool wear ratio, surface quality, and dimensional accuracy. The RC generator was more suited for minimizing the pulse energy, which is a requirement for fabricating micro-parts. The smaller-sized debris formed by the low-discharge energy of RC micro-EDM could be easily flushed away from the machined zone, resulting in a surface free of burrs and resolidified molten metal. The RC generator also required much less time to obtain the same quality micro-hole in WC. Therefore, RC generators are better suited for fabricating micro-structures, producing good surface quality and better dimensional accuracy than the transistor generators, despite their higher relative tool wear ratio.

A Study on the Equipment of Neutral Beam Assisted Deposition for MgO Protective Layer of High Efficient AC PDP (고효율 AC PDP용 MgO 보호막 형성을 위한 중성빔 보조 증착 장비에 관한 연구)

  • Li, Zhao-Hui;Kwon, Sang-Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.63-67
    • /
    • 2008
  • The MgO protective layer plays an important role in plasma display panels (PDPs). Our previous work demonstrated that the properties of MgO thin film could be improved, which were deposited by ion beam assisted deposition (IBAD). However arc discharge always occurs during the IBAD process. To avoid this problem, oxygen neutral beam assisted deposition (NBAD) is used to deposit MgO thin films in this paper. The energy of the oxygen neutral beam was used as the parameter to control the deposition. The experimental results showed that the oxygen neutral beam energy was effective in determining in F/$F^+$ centers, crystal orientation, surface morphology of the MgO thin film, and the discharge characteristics of AC PDP. The lowest firing voltage $(V_f)$ and the highest secondary electron emission coefficient $(\gamma)$ were obtained when the neutral beam energy was 300 eV.

  • PDF