• Title/Summary/Keyword: Effective Strain

Search Result 1,788, Processing Time 0.029 seconds

A Study on Non-Axisymmetric Precision Forging with and without Flash (플래쉬 유무에 따른 비축대칭 정밀단조에 관한 연구)

  • 배원병;김영호;최재찬;이종헌;김동영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.218-223
    • /
    • 1993
  • An UBET(Upper Bound Elemental Technique) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flashless forging. To analyze the process easily, it is suggested that the deformation is divided into two different parts. Those are axisymmetric part in corner and plane-strain part in lateral. The total power consumption is minimized through combination of two deformation parts by building block method, from which the upper-bound forging load, the flow pattern, the grid pattern, the veocity distribution and the effective strain are determined. To show the merit of flashless forging, the result of flashless and flash forging processes are compared through theory and experiment. Experiments have been carried out with plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.

  • PDF

Strength and strain enhancements of concrete columns confined with FRP sheets

  • Campione, G.;Miraglia, N.;Papia, M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.769-790
    • /
    • 2004
  • The compressive behavior up to failure of short concrete members reinforced with fiber reinforced plastic (FRP) is investigated. Rectangular cross-sections are analysed by means of a simplified elastic model, able also to explain stress-concentration. The model allows one to evaluate the equivalent uniform confining pressure in ultimate conditions referred to the effective confined cross-section and to the effective stresses in FRP along the sides of section; consequently, it makes it possible to determine ultimate strain and the related bearing capacity of the confined member corresponding to FRP failure. The effect of local reinforcements constitute by single strips applied at corners before the continuous wrapping and the effect of round corners are also considered. Analytical results are compared to experimental values available in the literature.

Three-Dimensional Behavior of Granular Soil (압상토의 3차원 거동)

  • 정진섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.2
    • /
    • pp.64-72
    • /
    • 1995
  • A series of cubical triaxial tests with three independent principal stresses was per- formed on Baekma river sand( # 40~100). It was found that the major principal strain at failure remained approximately constant for b values larger than about 0.3 for both the drained and undrained condition, and thereafter increased as b value decreased. The test results showed that the direction of the strain increment at failure form acute angles with the failure surfaces for both the drained and undrained condition. The results were thus not in agreement with the normality condition from classic plasticity theory. Howev- er, it was found that the projections of the plastic strain increment vectors on the octahe- dral plane were perpendicular to the failure surface in that plane. Failure strength in terms of effective stress anlaysis was greatly influenced by the variation of intermediate principal stress and so was failure criterion. The effective stress failure surfaces for both the drained and undrained condition were estimated quite well by use of Lade's failure criterion.

  • PDF

Shear Strength of RC Beams Strengthened with GFRP Sheets with Different Details (유리섬유쉬트로 전단보강된 RC보의 전단강도에 대한 보강매수 및 형태의 영향)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.251-254
    • /
    • 2005
  • A number of studies have been conducted on FRP shear strengthening of RC beams during the past decade. The test results indicated. that the strengthened specimens failed predominantly by debonding of the FRP sheets before reaching the rupture strength of FRP sheets. For this reason, limits on the effective strain in FRP have been incorporated in ACI 440.2R recommendation considering debonding failure. This paper presents the test results of 7 small scale RC beams shear-strengthened with glass fiber sheets. Three types of FRP configurations, such as two sides bonded, U wrap and fiber shear-key embedded, were considered. GFRP sheet were bonded vertically to member axis along the shear span. From the test results, it was found that debonding strain of GFRP sheets at failure decreased with the number of layers. In addition, effective strain of FRP proposed by ACI 440.2R recommendation has been verified in this study.

  • PDF

Approximate evaluations and simplified analyses of shear- mode piezoelectric modal effective electromechanical coupling

  • Benjeddou, Ayech
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.275-302
    • /
    • 2015
  • Theoretical and numerical assessments of approximate evaluations and simplified analyses of piezoelectric structures transverse shear modal effective electromechanical coupling coefficient (EMCC) are presented. Therefore, the latter is first introduced theoretically and its approximate evaluations are reviewed; then, three-dimensional (3D) and simplified two-dimensional (2D) plane-strain (PStrain) and plane-stress (PStress) piezoelectric constitutive behaviors of electroded shear piezoceramic patches are derived and corresponding expected short-circuit (SC) and open-circuit (OC) frequencies and resulting EMCC are discussed; next, using a piezoceramic shear sandwich beam cantilever typical benchmark, a 3D finite element (FE) assessment of different evaluation techniques of the shear modal effective EMCC is conducted, including the equipotential (EP) constraints effect; finally, 2D PStrain and PStress FE modal analyses under SC and OC electric conditions, are conducted and corresponding results (SC/OC frequencies and resulting effective EMCC) are compared to 3D ones. It is found that: (i) physical EP constraints reduce drastically the shear modal effective EMCC; (ii) PStress and PStrain results depend strongly on the filling foam stiffness, rendering inadequate the use of popular equivalent single layer models for the transverse shear-mode sandwich configuration; (iii) in contrary to results of piezoelectric shunted damping and energy harvesting popular single-degree-of-freedom-based models, transverse shear modal effective EMCC values are very small in particular for the first mode which is the common target of these applications.

Modeling Strain Rate-dependent Behavior in Consolidation of Natural Clay (자연점토의 변형률속도 의존적인 압밀거동의 해석)

  • ;Leroueil, S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.17-28
    • /
    • 1999
  • In order to analyze effects of strain rate on consolidation of natural clay, this paper presents a nonlinear elasto viscoplastic model in which viscoplastic behavior is modeled by a unique effective stress-strain-strain rate relationship (equation omitted). The predicted values using numerical analysis are compared with measured ones in several laboratory tests such as creep test, multistage load test, and relaxation test for Berthierville clay. It is possible to estimate consolidation behavior of natural clay with reasonable accuracy using the proposed nonlinear viscoplastic model.

  • PDF

Topology Optimization of Plane Structures using Modal Strain Energy for Fundamental Frequency Maximization

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Architectural research
    • /
    • v.12 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • This paper describes a topology optimization technique which can maximize the fundamental frequency of the structures. The fundamental frequency maximization is achieved by means of the minimization of modal strain energy as an inverse problem so that the strain energy based resizing algorithm is directly used in this study. The strain energy to be minimized is therefore employed as the objective function and the initial volume of structures is used as the constraint function. Multi-frequency problem is considered by the introduction of the weight which is used to combine several target modal strain energy terms into one scalar objective function. Several numerical examples are presented to investigate the performance of the proposed topology optimization technique. From numerical tests, it is found to be that the proposed optimization technique is extremely effective to maximize the fundamental frequency of structure and can successfully consider the multi-frequency problems in the topology optimization process.

A Study on the Strain Localization of Concrete (콘크리트의 변형률 국소화에 관한 연구)

  • Seo, Chul;Byun, Keun-Joo;Song, Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.178-182
    • /
    • 1995
  • Strain localization is important phenomenon since it governs the total behavior or ultimate loads in various kinds of engineering problems. Establishment of an analysis method for strain localization phenomena is also of great concern for expansion of fracture mechanics of concrete. Inside zone of localization, a decrese in stress is accompanied by an increse in strain; outside the strain decreses. All deformation localization phenomenon cannot be predicted by both the classical stress-strain formulation and the linear elastic fracture mechanics. In this paper, a simple one dimensional model including localized deformation zone is studied under compressive and tensile loading. When the model is loaded. localization is assumed to occur uniformly in a finite region and material outside the localization zone is modelled as elastic unloading occurs. Size effects of effective elastic moduli under compression and tension in localization zone are examined.

  • PDF

A Study on Scuffing Life by the Plastic Strain on Sliding Surfaces under Miscellaneous Lubricated Conditions (윤활조건에 따른 미끄럼표면의 소성변형량에 의한 스커핑수명 연구)

  • 김병주;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.91-99
    • /
    • 1998
  • A correlation between the low-cycle fatigue life and the scuffing-failure life is demonstrated using the plastic strain in boundary lubricated sliding. Loadings proportional to hardness with three different lubricated conditions were used to evaluate the plastic strain. As the results of scuffing tests using vacuum pump oils in nitrogen gas, plastic strain shows 0.0062, and In the mineral oils and commercial engine oils in air, plastic strain show 0.0042 and 0.00092. Those are very useful to describe quantitatively the real lubricated sliding conditions, and are very effective to find the relation between the low-cycle fatigue life and the scuffing life.

  • PDF

Enhanced Strain Imaging Using Quality Measure

  • Jeong, Mok-Kun;Kwon, Sung-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3E
    • /
    • pp.84-94
    • /
    • 2008
  • Displacement estimation is a crucial step in ultrasonic strain imaging. The displacement between a pre- and postcompression signal in the current data window is estimated by first shifting the postcompression signal by the displacement obtained in the previous data window to reduce their decorrelation and then determining the remaining part of the displacement through autocorrelation and conversion of phase difference into time delay. However, since strain image quality tends to vary with the amount of compression applied, we propose two new methods for enhancing strain image quality, i.e., displacement normalization and adaptive persistence. Both in vitro and in vivo experiments are carried out to acquire ultrasound data and produce strain images in real time under the application of quasi static compression. The experimental results demonstrate that the methods are quite effective in improving strain image quality and thus can be applied to implementing an ultrasound elasticity imaging system that operates in real time.