• 제목/요약/키워드: Edge-Cloud Systems

검색결과 77건 처리시간 0.02초

Intelligent Resource Management Schemes for Systems, Services, and Applications of Cloud Computing Based on Artificial Intelligence

  • Lim, JongBeom;Lee, DaeWon;Chung, Kwang-Sik;Yu, HeonChang
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1192-1200
    • /
    • 2019
  • Recently, artificial intelligence techniques have been widely used in the computer science field, such as the Internet of Things, big data, cloud computing, and mobile computing. In particular, resource management is of utmost importance for maintaining the quality of services, service-level agreements, and the availability of the system. In this paper, we review and analyze various ways to meet the requirements of cloud resource management based on artificial intelligence. We divide cloud resource management techniques based on artificial intelligence into three categories: fog computing systems, edge-cloud systems, and intelligent cloud computing systems. The aim of the paper is to propose an intelligent resource management scheme that manages mobile resources by monitoring devices' statuses and predicting their future stability based on one of the artificial intelligence techniques. We explore how our proposed resource management scheme can be extended to various cloud-based systems.

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

  • Xiuye Yin;Liyong Chen
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.450-464
    • /
    • 2023
  • To address the problems of large system overhead and low timeliness when dealing with task scheduling in mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and network models. In addition, a multi-objective optimization model, including delay and energy consumption, was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.

A Cloud-Edge Collaborative Computing Task Scheduling and Resource Allocation Algorithm for Energy Internet Environment

  • Song, Xin;Wang, Yue;Xie, Zhigang;Xia, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2282-2303
    • /
    • 2021
  • To solve the problems of heavy computing load and system transmission pressure in energy internet (EI), we establish a three-tier cloud-edge integrated EI network based on a cloud-edge collaborative computing to achieve the tradeoff between energy consumption and the system delay. A joint optimization problem for resource allocation and task offloading in the threetier cloud-edge integrated EI network is formulated to minimize the total system cost under the constraints of the task scheduling binary variables of each sensor node, the maximum uplink transmit power of each sensor node, the limited computation capability of the sensor node and the maximum computation resource of each edge server, which is a Mixed Integer Non-linear Programming (MINLP) problem. To solve the problem, we propose a joint task offloading and resource allocation algorithm (JTOARA), which is decomposed into three subproblems including the uplink transmission power allocation sub-problem, the computation resource allocation sub-problem, and the offloading scheme selection subproblem. Then, the power allocation of each sensor node is achieved by bisection search algorithm, which has a fast convergence. While the computation resource allocation is derived by line optimization method and convex optimization theory. Finally, to achieve the optimal task offloading, we propose a cloud-edge collaborative computation offloading schemes based on game theory and prove the existence of Nash Equilibrium. The simulation results demonstrate that our proposed algorithm can improve output performance as comparing with the conventional algorithms, and its performance is close to the that of the enumerative algorithm.

A Study of Mobile Edge Computing System Architecture for Connected Car Media Services on Highway

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5669-5684
    • /
    • 2018
  • The new mobile edge network architecture has been required for an increasing amount of traffic, quality requirements, advanced driver assistance system for autonomous driving and new cloud computing demands on highway. This article proposes a hierarchical cloud computing architecture to enhance performance by using adaptive data load distribution for buses that play the role of edge computing server. A vehicular dynamic cloud is based on wireless architecture including Wireless Local Area Network and Long Term Evolution Advanced communication is used for data transmission between moving buses and cars. The main advantages of the proposed architecture include both a reduction of data loading for top layer cloud server and effective data distribution on traffic jam highway where moving vehicles require video on demand (VOD) services from server. Through the description of real environment based on NS-2 network simulation, we conducted experiments to validate the proposed new architecture. Moreover, we show the feasibility and effectiveness for the connected car media service on highway.

An Edge AI Device based Intelligent Transportation System

  • Jeong, Youngwoo;Oh, Hyun Woo;Kim, Soohee;Lee, Seung Eun
    • Journal of information and communication convergence engineering
    • /
    • 제20권3호
    • /
    • pp.166-173
    • /
    • 2022
  • Recently, studies have been conducted on intelligent transportation systems (ITS) that provide safety and convenience to humans. Systems that compose the ITS adopt architectures that applied the cloud computing which consists of a high-performance general-purpose processor or graphics processing unit. However, an architecture that only used the cloud computing requires a high network bandwidth and consumes much power. Therefore, applying edge computing to ITS is essential for solving these problems. In this paper, we propose an edge artificial intelligence (AI) device based ITS. Edge AI which is applicable to various systems in ITS has been applied to license plate recognition. We implemented edge AI on a field-programmable gate array (FPGA). The accuracy of the edge AI for license plate recognition was 0.94. Finally, we synthesized the edge AI logic with Magnachip/Hynix 180nm CMOS technology and the power consumption measured using the Synopsys's design compiler tool was 482.583mW.

연결기반 명령어 실행을 이용한 재구성 가능한 IoT를 위한 온칩 플래쉬 메모리의 클라우드화 (Cloudification of On-Chip Flash Memory for Reconfigurable IoTs using Connected-Instruction Execution)

  • 이동규;조정훈;박대진
    • 대한임베디드공학회논문지
    • /
    • 제14권2호
    • /
    • pp.103-111
    • /
    • 2019
  • The IoT-driven large-scaled systems consist of connected things with on-chip executable embedded software. These light-weighted embedded things have limited hardware space, especially small size of on-chip flash memory. In addition, on-chip embedded software in flash memory is not easy to update in runtime to equip with latest services in IoT-driven applications. It is becoming important to develop light-weighted IoT devices with various software in the limited on-chip flash memory. The remote instruction execution in cloud via IoT connectivity enables to provide high performance software execution with unlimited software instruction in cloud and low-power streaming of instruction execution in IoT edge devices. In this paper, we propose a Cloud-IoT asymmetric structure for providing high performance instruction execution in cloud, still low power code executable thing in light-weighted IoT edge environment using remote instruction execution. We propose a simulated approach to determine efficient partitioning of software runtime in cloud and IoT edge. We evaluated the instruction cloudification using remote instruction by determining the execution time by the proposed structure. The cloud-connected instruction set simulator is newly introduced to emulate the behavior of the processor. Experimental results of the cloud-IoT connected software execution using remote instruction showed the feasibility of cloudification of on-chip code flash memory. The simulation environment for cloud-connected code execution successfully emulates architectural operations of on-chip flash memory in cloud so that the various software services in IoT can be accelerated and performed in low-power by cloudification of remote instruction execution. The execution time of the program is reduced by 50% and the memory space is reduced by 24% when the cloud-connected code execution is used.

저지연 서비스를 위한 Multi-access Edge Computing 스케줄러 (Multi-access Edge Computing Scheduler for Low Latency Services)

  • 김태현;김태영;진성근
    • 대한임베디드공학회논문지
    • /
    • 제15권6호
    • /
    • pp.299-305
    • /
    • 2020
  • We have developed a scheduler that additionally consider network performance by extending the Kubernetes developed to manage lots of containers in cloud computing nodes. The network delay adapt characteristics of the compute nodes were learned during server operation and the learned results were utilized to develop placement algorithm by considering the existing measurement units, CPU, memory, and volume together, and it was confirmed that the low delay network service was provided through placement algorithm.

Network Anomaly Traffic Detection Using WGAN-CNN-BiLSTM in Big Data Cloud-Edge Collaborative Computing Environment

  • Yue Wang
    • Journal of Information Processing Systems
    • /
    • 제20권3호
    • /
    • pp.375-390
    • /
    • 2024
  • Edge computing architecture has effectively alleviated the computing pressure on cloud platforms, reduced network bandwidth consumption, and improved the quality of service for user experience; however, it has also introduced new security issues. Existing anomaly detection methods in big data scenarios with cloud-edge computing collaboration face several challenges, such as sample imbalance, difficulty in dealing with complex network traffic attacks, and difficulty in effectively training large-scale data or overly complex deep-learning network models. A lightweight deep-learning model was proposed to address these challenges. First, normalization on the user side was used to preprocess the traffic data. On the edge side, a trained Wasserstein generative adversarial network (WGAN) was used to supplement the data samples, which effectively alleviates the imbalance issue of a few types of samples while occupying a small amount of edge-computing resources. Finally, a trained lightweight deep learning network model is deployed on the edge side, and the preprocessed and expanded local data are used to fine-tune the trained model. This ensures that the data of each edge node are more consistent with the local characteristics, effectively improving the system's detection ability. In the designed lightweight deep learning network model, two sets of convolutional pooling layers of convolutional neural networks (CNN) were used to extract spatial features. The bidirectional long short-term memory network (BiLSTM) was used to collect time sequence features, and the weight of traffic features was adjusted through the attention mechanism, improving the model's ability to identify abnormal traffic features. The proposed model was experimentally demonstrated using the NSL-KDD, UNSW-NB15, and CIC-ISD2018 datasets. The accuracies of the proposed model on the three datasets were as high as 0.974, 0.925, and 0.953, respectively, showing superior accuracy to other comparative models. The proposed lightweight deep learning network model has good application prospects for anomaly traffic detection in cloud-edge collaborative computing architectures.

IoT 응용을 위한 결함 포용 발행/구독 시스템의 설계 및 평가 (Design and Evaluation of a Fault-tolerant Publish/Subscribe System for IoT Applications)

  • 배인한
    • 한국멀티미디어학회논문지
    • /
    • 제24권8호
    • /
    • pp.1101-1113
    • /
    • 2021
  • The rapid growth of sense-and-respond applications and the emerging cloud computing model present a new challenge: providing publish/subscribe middleware as a scalable and elastic cloud service. The publish/subscribe interaction model is a promising solution for scalable data dissemination over wide-area networks. In addition, there have been some work on the publish/subscribe messaging paradigm that guarantees reliability and availability in the face of node and link failures. These publish/subscribe systems are commonly used in information-centric networks and edge-fog-cloud infrastructures for IoT. The IoT has an edge-fog cloud infrastructure to efficiently process massive amounts of sensing data collected from the surrounding environment. In this paper. we propose a quorum-based hierarchical fault-tolerant publish/subscribe systems (QHFPS) to enable reliable delivery of messages in the presence of link and node failures. The QHFPS efficiently distributes IoT messages to the publish/subscribe brokers in fog overlay layers on the basis of proposing extended stepped grid (xS-grid) quorum for providing tolerance when faced with node failures and network partitions. We evaluate the performance of QHFPS in three aspects: number of transmitted Pub/Sub messages, average subscription delay, and subscritpion delivery rate with an analytical model.

회랑감시를 위한 컴퓨팅 기법의 성능 비교와 최적 선택 연구 (Performance Comparison and Optimal Selection of Computing Techniques for Corridor Surveillance)

  • 조경래;홍석민;최원혁
    • 한국항행학회논문지
    • /
    • 제27권6호
    • /
    • pp.770-775
    • /
    • 2023
  • 최근 디지털 데이터 양의 기하급수적 증가는 데이터 처리 시스템의 중요성을 부각시켰다. 이 연구는 클라우드 컴퓨팅 (CC; cloud computing), 엣지 컴퓨팅 (EC; edge computing), 그리고 UAV (unmanned aerial vehicle) 기반 지능형 에지 컴퓨팅 (UEC; unmanned aerial vehicle-based intelligent edge computing) 간의 성능을 비교하였으며, 특히 회랑감시와 같은 실시간 대용량 데이터 처리 상황에 초점을 맞추었습니다. UAV 기반 지능형 에지 컴퓨팅은 이동성과 특수 환경에서의 대규모 데이터 처리 및 분석에 높은 효과성을 보인다. 이러한 연구 결과를 바탕으로 각 상황에 맞게 최적화된 시스템 선택 방법론을 제안한다.