

www.kips.or.kr Copyright© 2023 KIPS

Task Scheduling and Resource Management Strategy

for Edge Cloud Computing Using Improved

Genetic Algorithm

Xiuye Yin1,* and Liyong Chen2

Abstract

To address the problems of large system overhead and low timeliness when dealing with task scheduling in

mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing

based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on

edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and

network models. In addition, a multi-objective optimization model, including delay and energy consumption,

was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations

of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution

crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective

problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental

analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does

not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.

Keywords

Edge Cloud Computing, Energy Consumption, Improved Genetic Algorithm, Normal Distribution Crossover

Operator, Resource Management, Task Scheduling, Time Delay

1. Introduction

As one of the key cores of the information industry, cloud computing has developed rapidly with strong

support from the state and society. Mobile cloud computing (MCC) realizes the decentralization of cloud

computing services, allowing users to access cloud resources anytime and anywhere without being

constrained by space and computing equipment [1]. Owing to the limitations of portability and mobility,

mobile devices generally have restricted computing and storage performances, which cannot meet the

needs of users for computing-intensive and delay-sensitive applications. Therefore, computing offloading

technologies have emerged [2,3]. This technology saves local resources by sending local computing tasks

to locations with abundant computing resources.

However, the wireless communication environment between mobile devices and edge cloud has an

important impact on task offloading performance and directly affects the decision of mobile user

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received January 21, 2022; first revision March 29, 2022; second revision May 26, 2022; accepted June 3, 2022.
*Corresponding Author: Xiuye Yin (20111036@zknu.edu.cn)
1 School of Computer Science and Technology, Zhoukou Normal University, Zhoukou, China (20111036@zknu.edu.cn)
2 School of Network Engineering, Zhoukou Normal University, Zhoukou, China (chenliyongup@126.com)

J Inf Process Syst, Vol.19, No.4, pp.450~464, August 2023 ISSN 1976-913X (Print)
https://doi.org/10.3745/JIPS.01.0095 ISSN 2092-805X (Electronic)

Xiuye Yin and Liyong Chen

J Inf Process Syst, Vol.19, No.4, pp.450~464, August 2023 | 451

equipment to perform task offloading [4]. Currently, research on mobile edge computing (MEC) focuses

on single-objective optimization to reduce system delay or energy consumption [5]. Examples of this

include the elastic load-balancing scheme proposed for the problem of node load imbalance resulting

from abundant parallel computing in a cloud environment, the distributed algorithm offloading strategy

using game theory, and the wireless network offloading strategy using binary computing methods [6]. Li

and Jiang [7] suggested a distributed task-unloading strategy for low-load base station groups that used

the potential game model as the solution. This effectively alleviated the energy consumption of

distributed task offloading; however, the communication delay was relatively high. Regarding the role of

fog computing in reducing latency and saving energy consumption, Luo et al. [8] proposed a resource

cooperation incentive mechanism to execute different equipment tasks combined with alliance game

theory. This mechanism effectively realized the scheduling and distribution of computing tasks. Although

it reduced the energy consumption of mobile devices, it increased computing and communication energy

consumption, thereby requiring further optimization. In [9], a decentralized algorithm was developed

based on a computational equilibrium strategy. This algorithm was used to calculate task offloading

decisions between local devices and edge clouds and achieve efficient task offload classification;

however, it had a high degree of dependence on average system parameters. Josilo and Dan [10]

investigated the offloading of computing tasks and application program division and conducted an in-

depth investigation of various offloading strategies to save the enforcement time of computing tasks for

mobile devices and extend their endurance. The abovementioned offloading strategy is mainly optimized

for a single goal in the system, and simultaneously meeting the requirements of low energy loss and low

latency for multiuser and multitask applications is difficult [11].

In line with the rise in computing power and communication technology, intelligent algorithms have

been widely used in the field of multi-objective optimization. For example, Xu et al. [12] suggested a

computing task offloading method based on cloud edge computing of the Internet of Things (IoT). A

non-dominated sorting genetic algorithm was used to address the problem of multi-objective optimization

of the cloud edge computing task offloaded by the algorithm; however, the overall efficiency of the

algorithm requires improvement. Zhou et al. [13] proposed a computational unloading method based on

contract theory and computational intelligence. The incentive mechanism and contract theory were used

to encourage the server to share its remaining computing resources, and the online learning ability of the

multi-arm slot machine was used to propose a distributed task offloading algorithm. It effectively reduced

the task offloading delay; however, an improvement in the offloading efficiency of computing tasks is

still required for computing-intensive applications. With reference to the problem of limited computing

power in connected car equipment, Liu et al. [14] proposed two computing task offloading strategies:

partial and binary offloading. Binary offloading reduces the latency of processing computationally

intensive tasks, whereas partial offloading improves the real-time performance of processing divisible

complex tasks and reduces energy consumption. However, the advantages of the two methods have not

been deeply integrated, and timeliness and energy consumption optimization cannot be balanced.

Based on the above analysis, an edge cloud computing task scheduling and resource management

strategy based on improved genetic algorithms was proposed to solve the problems of timeliness and

energy consumption optimization in the process of IoT edge cloud computing task scheduling and

resource management. The contributions of this study are as follows:

(1) To improve resource management efficiency, the suggested strategy uses edge cloud computing

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

452 | J Inf Process Syst, Vol.19, No.4, pp.450~464, August 2023

to build a task scheduling model. Through optimized decision-making, some tasks are offloaded to

edge cloud servers for calculation, which ensures time-consuming calculations and reduces system

energy consumption.

(2) Considering the premature convergence of genetic algorithms leading to the high overhead of

offloading algorithms, the proposed strategy improves the mutation and crossover processes of

the genetic algorithm and combines the normal distribution crossover (NDX) operator to expand

the feasible solution range. This can enhance the search efficiency and accuracy of the algorithm,

avoid premature convergence, and reduce system overhead.

2. System Model and Optimization Goal

2.1 System Model

According to previous research results on MCC and mobile communication networks, the design of

mobile user scheduling tasks is in a quasistatic scenario. Fig. 1 shows the system model. � � �1,2, ⋯ , ��

mobile device users are randomly distributed around the base station, and user-computing tasks are

scheduled to the MEC server through the base station for computing.

In this system model, all users with task scheduling requirements keep their scheduling and offloading

strategies unchanged during the process of computing offloading to the MEC server, which typically lasts

a few hundred milliseconds. This does not affect the user's later policy changes and maintains the stability

of the system.

Fig. 1. Overall structure of the system model.

2.2 Communication Model

In general, the mobile operator determines the communication rate between mobile device users and

base stations, that is, the state of the data transmission channel, uplink transmission rate, and downlink

transmission rate. The improvement in 3G, 4G, and 5G network speeds also improves and expands

Xiuye Yin and Liyong Chen

J Inf Process Syst, Vol.19, No.4, pp.450~464, August 2023 | 453

communication operators’ technology and resources. The system design has � = �1,2, ⋯ ,�� wireless

transmission channels between the user and the base station, and �� is the computing offloading strategy

of user �. �� = 0 indicates that the user places computing tasks on the local mobile terminal to run,

whereas �� > 0 indicates that the user offloads computing tasks to the MEC terminals to run through a

wireless channel, which is expressed as follows:

�� = 0 ∪ �, (1)

Then, ���� = ���,��, ⋯ , ��	 is the task scheduling strategy for all users, and the definition of the

Shannon spectrum formula is used to obtain the data uplink transmission rate when mobile users choose

to schedule tasks in the cloud. The channel capacity
� is evaluated as follows:

������	 = ���� �1 +
��
��

�, (2)

where � represents the channel bandwidth; �� = ����, �� and �� are the transmission power density

and channel gain of communication between user � and the base station, respectively; and �	 = � +

∑ �	�	�
	∈
��;���� and � are background white noise interference. If multiple users share the same channel

to transmit data in a wireless cellular network, mutual interference will occur, which will reduce system

performance and increase user load. Therefore, mutual interference is not considered for the time being.

2.3 Calculation Model and Optimization Goal

Assuming that the tasks in the scenario are independent of each other, each task can be executed locally,

or all or part of the tasks can be uploaded to the cloud for enforcement. Let matrix �� = ���,��,��, ��	
denote task �, where �� denotes the amount of data uploaded by task � including the parameters and

code blocks required for the calculation. 0 < �� < 1 represents the ratio of task � intensive task data

volume to the overall data volume. The larger �� is, the more CPU resources are required for computing

tasks and the greater the time complexity. 0 ≤ �� ≤ 1 represents the offload rate of task �, �� = 0

represents that task � is executed locally, and �� = 1 represents that task � is implemented remotely at

the edge, cloud, etc. �� represents the maximum tolerance of task � to delay. If the threshold is exceeded,

user experience cannot be guaranteed.

The delay in executing tasks locally is related to factors such as terminal computing power and data

size. The delay of the local computer performing task � is

��,�=1−��������, (3)

where �� is the CPU frequency of local computer to execute task �.

The computation expression for computing the energy consumption of local execution task � is

��,� = �!1 − ��"����, (4)

where � indicates the energy consumed in the unit CPU cycle of the computer to execute task �, and

 � = 10�27��2.

When task � is implemented locally, the delay and energy consumption costs are

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

454 | J Inf Process Syst, Vol.19, No.4, pp.450~464, August 2023

#� = $���,� + !1 − $�"��,�, (5)

where 0 < $� < 1 represents the delay weighting factor of task �. The closer $� is to 1, the more

sensitive the task is to delays. 1 − $� is the energy consumption weighting factor for task �. The closer

1 − $� is to 1, the more sensitive the task is to energy consumption. It is assumed that the delay weighting

factor and energy consumption weighting factor are equal; that is, both are 0.5.

If all tasks are executed locally, the delay and energy consumption costs are

#�,� = ∑ #�,��
�1

, (6)

In addition, users can upload a part of the tasks or all tasks to the cloud or edge for execution. The

cloud processing task is divided into the following three steps. First, users upload the task code and

parameters required for the calculation to the edge or cloud server through a wireless access network.

Second, the server distributes the calculation resources to the task and completes the calculation after

receiving a task request. Finally, users download the result of the calculation using a downlink to

complete task processing after completing the calculation.

Transmission delays occur when tasks are uploaded to the cloud. The calculation expression of upload

task � transmission delay is

���,� =
����
��

, (7)

where %� represents the rate at which users upload task �.

Let ��� denote the user �’s channel gain under the coverage of &!& = 1,2, ⋯ ,'" base station. (�,

(�, and)2 represent the transmission power of base station &, the uplink transmission power of user

terminal �, and Gaussian white noise, respectively. The signal-to-noise ratio of user terminal � can be

expressed as:

*� =
|���|2��

∑ |���|2��� ��2
. (8)

Assume that � is the wireless channel bandwidth, and each cell and user terminal uses the same

spectrum resources. Theoretically, the spectrum reuse factor is 1, and the maximum upload speed that

user � can accomplish when uploading tasks is

� ���1 + ������. (9)

User-upload tasks expend the energy of the terminal equipment, and the amount of energy consumed

is related to the transmission time. Expressing the power of user � upload task as (� , the energy

consumption of the user's upload task is

���,� = (����,� =
������

��
. (10)

After the edge server receives the task, the task process causes calculation delays. Assume that the

maximum computing power of the edge server is +���, and the computing resource allocated by the edge

server for task � is +��+� < +���()	. Multiuser and multitask requests for the computing resources of

the edge server may simultaneously exceed the maximum computing ability of the edge server.

Xiuye Yin and Liyong Chen

J Inf Process Syst, Vol.19, No.4, pp.450~464, August 2023 | 455

After the server receives the task request, the time delay for allocating the computing resources to the

task and performing the calculation is

���,� =
������

 �
. (11)

When a task is processed, the local terminal becomes idle. When the mobile edge server processes task

�, that is, the standby energy consumption when the local terminal is in an idle state, the calculation

expression is

�	!,� =
�����,�������

 �
, (12)

where ("�	�,� represents the power consumed when the mobile edge server processes task � when the

local terminal is idle.

After the edge/cloud server completes the calculation-intensive task, the mobile terminals download

the calculation results using a downlink. Compared to the amount of data uploaded by users, the user

only needs to download a smaller amount of calculation result data. The downlink has a fast download

speed, and the overhead generated by the download is small, which can be ignored.

In summary, the overall cost of task � in the execution of edge computing services and cloud

computing services is

##�,� = $�!���,� + ���,�" + !1 − $�"!���,� + �	!,�". (13)

Considering the local cost and edge/cloud cost comprehensively, the calculation expression of the

overall system cost is

#�,� = $�!���,� + ���,� + ��,�" + !1 − $�"!���,� + �	!,� + ��,�". (14)

Suppose the completion time limit of task is �, and the optimization goal is to minimize the overall

system overhead. Under the requirements of maximum system delay and maximum system ability, the

proposed optimization objective function and constraint conditions can be expressed as

 &,� #� = ∑ #�,�
�
�1

,

1:�� ∈ -0,1.,$� ∈ -0,1.,

2:

$1���%����
& ≤ �,

3:
����
��

+
������

 �
≤ �,

4: 0 ≤ +� ≤ +���,

5:∑ +��
�1

≤ +���.

(15)

3. Proposed Solution

The task calculation and distribution problem were converted into a nonlinear 0–1 programming

problem, and a modified genetic algorithm was used to handle it. A feasible solution in the algorithm

was determined by a chromosome, which corresponds to the corresponding task allocation strategy;

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

456 | J Inf Process Syst, Vol.19, No.4, pp.450~464, August 2023

that is, the optimal solution of the improved genetic algorithm is the optimal allocation strategy of the

model.

3.1 Initialization Process

First, five aspects must be determined: maximum number of iterations, model parameters, crossover

and mutation probabilities, chromosome length, and parameter set size, which represents the population

size.

 Maximum number of iterations: The number of iterations depends on the convergence of the

algorithm, and the range of the number of iterations is generally [200, 500].

 Migration model parameters: The parameters relevant to the previous article are separated into two

types. One is the server resource information that must be obtained, and the other is calculated

through historical data analysis or using the value set by the developer according to the actual

situation. Regarding the data that must be obtained and stored in the database, one can directly

connect to the database and fetch the latest data from the database into the formula in the algorithm.

 Crossover and mutation probabilities: The value range of the crossover probability is generally

between [0.1, 0.99]. When the chromosome changes, it affects the convergence accuracy and speed

of the algorithm to a certain extent. Therefore, the mutation probability is relatively small, which is

generally between [0.0001, 0.1].

 Chromosome length: This refers to the number of mobile user tasks.

 Parameter set size: This parameter is generally determined based on the number of tasks. For

example, when the number of tasks is �, the size of the parameter set, that is, the size of the

population, is 2�/2.

3.2 Coding Process

When solving a system model, � task scheduling strategies are the values of variable /�!� ∈

01, ⋯ ,�1". Assuming that the number of tasks is �, the solution space of the algorithm is -0, 2�., and

the population size is 2�/2. It must convert 2�/2 real numbers into binary form. For example, when � is

12, -0, 212. real numbers are randomly selected from the solution space 212/2 as the initial population. At

this time, the population size is 212/2 = 64, and the 64 numbers must be coded. For example, if the real

number 22 is randomly selected, the coding format of 12 gene positions represented by the real number

is [0 0 0 0 1 0 1 0 1 1 0 1]. In the sequence format, “1” means that it is offloaded to the edge cloud server

for calculation, and “0” means that the calculation is performed on the local server.

3.3 Fitness Function Construction

The traditional genetic algorithm selects individuals with higher fitness values to inherit the next

generation. Thus, the reciprocal of the total user overhead was selected as the fitness function for

evaluating the advantages and disadvantages of the chromosomes. The expression is as follows:

�,2�344 =
1

'�$(�	,��(
�,��(�,�%� $1�'�%$)�	,��)�,��)�,�%
. (16)

Xiuye Yin and Liyong Chen

J Inf Process Syst, Vol.19, No.4, pp.450~464, August 2023 | 457

3.4 Select Operation

The concept of this strategy is to copy the best individuals (elite individuals) that have occurred in the

evolution of a group directly to the next generation without pairing crossover, mutation, or other

operations. Eiben used a Markov chain to prove that adding an elite retention strategy to genetic

algorithms has global convergence. First, the fitness function was selected as the selection probability to

build the roulette selection operator.

In the selection operation, each chromosome was first substituted into the selection probability as the

offloading strategy, and the probability of selection -(1,(2, ⋯ ,(�. corresponding to each chromosome

was then obtained. Moreover, the probability was accumulated to calculate -(1,(1 + (2, ⋯ ,(1 + (2 +

⋯ + (�., and 2�/2 random numbers were generated within the range of -0,(1 + (2 + ⋯ + (�.. The

random numbers in which intervals in the -(1,(1 + (2, ⋯ ,(1 + (2 + ⋯ + (�. range were compared,

and the chromosomes corresponding to the probability value of selection in this interval were selected to

get a new population. Finally, elite individuals were retained without mutation and crossover operations.

It was copied to the next generation in the next iteration as a new population individual.

3.5 Crossover Operation

After retaining some of the gene fragments for the parent, the crossover operation of the improved

genetic algorithm generated new offspring and extended the range of feasible solutions. Examples of

crossover and mutation are shown in Fig. 2.

Fig. 2. Examples of crossover and mutation.

Suppose that the chromosomes of the parent population are 51 and 52, which use the NDX operator to

generate offspring as 61 and 62. The crossover operation was separated into the following steps:

Step 1: Randomly generate number ℎ ∈ 0,1.

Step 2: Cross.

If ℎ ≤ 0.5, the crossover operation modes of , gene 61,	 of offspring 1 and , gene 62,	 of the generated

offspring 2 are

61,	 =
*
1,�
�*

2,�

2
+

1.481+*
1,�
�*

2,�
,-�$0,1%-

2
,

62,	 =
*
1,�
�*

2,�

2
−

1.481+*
1,�
�*

2,�
,-�$0,1%-

2
,

(17)

1 0 1 0 1 0 1

1 0 0 1 1 0 1

y1 y2 y3 y4 y5 y6 y7

R1

R2

y1 y2 y3 y4 y5 y6 y7

1

Crossing

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

458 | J Inf Process Syst, Vol.19, No.4, pp.450~464, August 2023

where 71,	 and 72,	 indicate the , genes of chromosomes 51 and 52, respectively;
1.481+*

1,�
�*

2,�
,

2
 is the size

of the search step, and the ratio coefficient of the search step size to
+*

1,�
�*

2,�
,

2
 is 1.481.

If ℎ ≤ 0.5, the crossover operation models are:

61,	 =
*
1,�
�*

2,�

2
−

1.481+*
1,�
�*

2,�
,-�$0,1%-

2
,

62,	 =
*
1,�
�*

2,�

2
+

1.481+*
1,�
�*

2,�
,-�$0,1%-

2
.

(18)

4. Experiment and Analysis

4.1 Experimental Setup

The proposed method was verified using the MATLAB 2016 simulation platform. The simulation

parameters are listed in Table 1. It is assumed that only Gaussian white noise interference exists. Suppose

that the communication cell deploys an intelligent base station with sufficient computing power. Various

potential users are randomly distributed in the cell.

Table 1. Simulation parameters

Parameter Value

Computing capability of mobile devices (cycles/s) 6×102

Standby power of mobile devices (W) 1.0×10-3

Transmitting power of mobile devices (W) 0.5×10-1

Computing power of edge devices (cycles/s) 3×103

Edge offloading delay (ms) 1.2

Cloud computing capability (cycles/s) 4×103

Cloud offloading delay (ms) 20

Channel bandwidth (kB/s) 1.0×102

Calculated power of mobile devices (W) 6×10-1

Gaussian white noise power (W) 1.0×10-9

Number of users [10,50], uniform distribution

4.2 Performance Comparison

Improving the crossover and mutation probabilities of a genetic algorithm has a certain impact on the

convergence of the algorithm. The total user overhead results under different crossover and mutation

probabilities when the number of users is 30 are shown in Fig. 3.

As shown in Fig. 3, when a fixed crossover and mutation probability are given, the algorithm reaches

a local optimal solution, and the search process is lengthened. The adaptive crossover and mutation

probabilities can be dynamically adjusted using the fitness value to prevent entering the local optimal

solution. Compared to fixed crossover probability and mutation probability settings, the proposed

Xiuye Yin and Liyong Chen

J Inf Process Syst, Vol.19, No.4, pp.450~464, August 2023 | 459

algorithm has obvious advantages and fast convergence speed. When the number of iterations is 50, the

total user overhead tends to converge to 32 J approximately.

Fig. 3. Impact of crossover and mutation probabilities on the convergence of the algorithm.

The result of the iteration is shown in Fig. 4.

As shown in Fig. 4, when the number of iterations increases, the total user overhead of the improved

genetic algorithm is lower than that of the genetic algorithm by approximately 7 J. Because the improved

genetic algorithm uses the NDX operator to update the crossover and mutation probabilities, it can avoid

falling into the local optimum. Therefore, it gradually converges at 50 iterations and finally approaches

approximately 32 J. However, the genetic algorithm easily reaches the local optimum. In addition, the

convergence process fluctuates significantly; when the number of iterations is 100, the total user overhead

is 39 J.

Fig. 4. Iterative convergence results of the two algorithms.

0 20 40 60 80 100

20

30

40

50

60

70

80

90

T
o

ta
l

u
s
e
r

c
o

s
t/

J

Number of iterations

 Crossover probability 0.9 & mutation

probability 0.1
Crossover probability 0.96 & mutation

probability 0.001

Crossover probability 0.93 & mutation

probability 0.025

 Adaptive crossover and mutation probability

0 25 50 75 100

20

30

40

50

60

70

80

90

100

T
o

ta
l
u

s
e
r

c
o

s
t/

J

Number of iterations

 Genetic algorithm

 Improved genetic algorithm

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

460 | J Inf Process Syst, Vol.19, No.4, pp.450~464, August 2023

The relationship between the total number of network users and the number of offloading users is

shown in Fig. 5.

Fig. 5. Relationship between the total number of network users and the number of offloading users.

Fig. 5 shows that as all computing tasks are processed locally, task scheduling does not occur.

Therefore, the number of offloading users is always 0. When choosing to offload all tasks, until the

number of users is greater than 30, the system bandwidth is exhausted, and the remaining users who have

not been offloaded can only choose to process tasks locally. Zhou et al. [13] did not consider the

limitations of system bandwidth. When the number of users is greater than 35, the system bandwidth is

close to saturation, and users cannot choose to offload tasks. The suggested strategy can maximize the

use of the system bandwidth and appropriately select the number of offloaded users compared with the

other three strategies, thereby improving system utility. When the number of network users reaches 45,

the number of offloading users is only 18. The system still has the capabilities of task offloading and

resource management.

To demonstrate the performance of the proposed strategy, we compared the total system overhead

obtained by the local calculation of all network users, all offloading users, the strategy in [13], and our

proposed strategy in terms of different numbers of users. The results are shown in Fig. 6.

As shown in Fig. 6, channel congestion and inter-user interference increase so rapidly that the system

overhead for users to select the all-offloading strategy is greater than the local computing overhead when

there are more than 30 users in the system. Therefore, designing an edge cloud computing environment

requires designing the hardware configuration of the base stations and MEC servers according to the

number of edge users to meet the needs of mobile users. In addition, Zhou et al. [13] realized task

offloading and resource sharing in two stages by combining contract theory and computational

intelligence. The incentive mechanism and contract theory were used to encourage the server to share its

remaining computing resources, and the multi-arm slot machine algorithm was used for online learning

to complete distributed task offloading. Thus, the system energy consumption can be effectively reduced;

however, the offloading process is complicated, which undoubtedly increases the calculation and

communication energy consumption to a certain extent. The proposed strategy was based on edge cloud

10 15 20 25 30 35 40 45

0

2

4

6

8

10

12

14

16

18

20

N
u

m
b
e
r
 o

f
 u

n
in

s
ta

ll
e
d
 u

s
e
r
s

Number of network users

 Proposed strategy

 Ref.[13]

 Uninstall all

 Local computing

Xiuye Yin and Liyong Chen

J Inf Process Syst, Vol.19, No.4, pp.450~464, August 2023 | 461

computing for task scheduling, and the best resource management plan was obtained by improving a

genetic algorithm. The whole process is simple and efficient, resulting in low energy consumption. The

total system overhead is less than 50 J when the number of users is 50.

Fig. 6. Total system cost of the different strategies.

Similarly, considering different numbers of users, we compared the average delay of all users’ local

computing, all offloading, the strategy in [13], and the mobile user’s task execution in the proposed

strategy, as shown in Fig. 7.

Fig. 7. Average delay of the different strategies.

Fig. 7 clearly shows that when the number of mobile devices increases, the average delay of the

proposed strategy increases slowly, and the advantages become more evident. The average delay is

0 15 20 25 30 35 40 45 50

0

20

40

60

80

100

120
T

o
ta

l
sy

st
em

 c
o
st

/J

Number of users

 Local computing

 Uninstall all

 Ref.[13]

 Proposed strategy

20 40 60 80 100 120 140 160 180

10

12

14

16

18

20

22

24

26

28

30

A
v

er
ag

e
 d

e
la

y
/m

s

Number of mobile devices

 Proposed strategy

 Ref.[13]

 Uninstall all

 Local computing

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

462 | J Inf Process Syst, Vol.19, No.4, pp.450~464, August 2023

approximately 23.2 ms when the number of devices is 180. This is because the proposed cloud-side

collaboration model is used to construct the task scheduling model, and an improved genetic algorithm

is selected to handle the problem; hence, the best resource management plan can be obtained. It can

comprehensively consider local and cloud computing resources to accomplish both minimum energy

consumption and minimum delay. The average delay of the local calculation strategy is constant at

approximately 28.1 ms. Because all computing tasks were performed locally, there was no offloading

delay. When the full offloading strategy is adopted, the more mobile devices there are, and the more

exhausted the communication bandwidth is will tend to be exhausted; thus, the resulting offloading delay

will continues to increase. When the number of devices reaches 180, the average delay is close to 28 ms.

Zhou et al. [13] proposed a two-stage resource-sharing and task-offloading method, which used the

incentive mechanism and contract theory were used to spur servers to share their remaining computing

resources. Although it can achieve better task scheduling better, the complex contract theory and

offloading process increase the system delay. Therefore, the average delay increases rapidly, exceeding

24 ms, as the number of devices increases.

5. Conclusion

In recent years, the number of mobile Internet users with mobile smart terminals has increased with

the continuous popularization of cloud computing technology and the ongoing advancements of mobile

network technology. Edge cloud computing has emerged to meet the business requirements of ultralow

latency and power consumption, ultrahigh reliability, and density. Based on this, an edge cloud

computing task scheduling and resource management strategy using an improved genetic algorithm was

proposed. In addition, a user task scheduling system model was constructed based on edge cloud

computing, and an improved legacy algorithm was selected to handle the multi-objective optimization

function, including time delay and energy consumption. The optimal solution for the algorithm is the best

resource management plan. A simulation experiment of the suggested strategy was implemented based

on MATLAB, and the results of the experiment confirm the following conclusions:

(1) Optimizing the crossover and mutation operations of the genetic algorithm using the NDX

operator can increase the convergence speed and optimization performance of the algorithm.

Convergence was achieved when the number of iterations was 50, and the total system overhead

was reduced by approximately 7 J compared with traditional genetic algorithms.

(2) The proposed strategy combined edge cloud computing and intelligent algorithms for task

scheduling. The energy consumption during this period was less than 50 J, and the average delay

was 23.2 ms. The experimental results indicate that the overall performance of the proposed

strategy is better than that of the comparison strategy.

To reduce the difficulty in deriving a theoretical formula, some system model parameters were set to

constant values in the simulation experiment. In future work, we will impose fewer restrictions on the

model parameters, and more consideration will be given to the dynamic changes in the parameter weights

in the model. Moreover, the addition of simulation experimental samples will enable the real-life

applications of the proposed model algorithm.

Xiuye Yin and Liyong Chen

J Inf Process Syst, Vol.19, No.4, pp.450~464, August 2023 | 463

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 61402350,

61103143, U1404620, and U1404622), the Key Scientific and Technological Project of Henan Province

(No. 182102310034, 172102310124, and 212102210400), the Key Research Projects of Henan

Provincial Department of Education (No. 20A520046).

References

[1] D. Madeo, S. Mazumdar, C. Mocenni, and R. Zingone, “Evolutionary game for task mapping in resource

constrained heterogeneous environments,” Future Generation Computer Systems, vol. 108, pp. 762-776,

2020. https://doi.org/10.1016/j.future.2020.03.026

[2] E. H. Lee and S. Lee, “Task offloading algorithm for mobile edge computing,” Journal of Korean Institute of

Communications and Information Sciences, vol. 46, no. 2, pp. 310-313, 2021. https://doi.org/10.7840/kics.

2021.46.2.310

[3] A. R. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling techniques in cloud computing: a literature

survey,” Future Generation Computer Systems, vol. 91, pp. 407-415, 2019. https://doi.org/10.1016/j.future.

2018. 09.014

[4] P. P. Hung, M. G. R. Alam, H. Nguyen, T. Quan, and E. N. Huh, “A dynamic scheduling method for

collaborated cloud with thick clients,” International Arab Journal of Information Technology, vol. 16, no. 4,

pp. 633-643, 2019.

[5] G. Lou and Z. Cai, “A cloud computing oriented neural network for resource demands and management

scheduling,” International Journal of Network Security, vol. 21, no. 3, pp. 477-482, 2019. https://doi.org/

10.6633/IJNS.201905_21(3).14

[6] X. Huang, C. Li, H. Chen, and D. An, “Task scheduling in cloud computing using particle swarm optimization

with time varying inertia weight strategies,” Cluster Computing, vol. 23, pp. 1137-1147, 2020. https://doi.org/

10.1007/s10586-019-02983-5

[7] Y. Li and C. Jiang, “Distributed task offloading strategy to low load base stations in mobile edge computing

environment,” Computer Communications, vol. 164, pp. 240-248, 2020. https://doi.org/10.1016/j.comcom.

2020.10.021

[8] S. Luo, X. Chen, Z. Zhou, X. Chen, and W. Wu, “Incentive-aware micro computing cluster formation for

cooperative fog computing,” IEEE Transactions on Wireless Communications, vol. 19, no. 4, pp. 2643-2657,

2020. https://doi.org/10.1109/TWC.2020.2967371

[9] S. Josilo and G. Dan, “Decentralized algorithm for randomized task allocation in fog computing systems,”

IEEE/ACM Transactions on Networking, vol. 27, no. 1, pp. 85-97, 2019. https://doi.org/10.1109/TNET.2018.

2880874

[10] G. Sakarkar, N. Purohit, N. S. Gour, S. B. Meshram, “A review of computational task offloading approaches

in mobile computing,” International Journal of Scientific Research in Science, Engineering and Technology,

vol. 6, no. 2, pp. 381-387, 2019. https://doi.org/10.32628/IJSRSET

[11] W. Li, S. Cao, K. Hu, J. Cao, and R. Buyya, “Blockchain-enhanced fair task scheduling for cloud-fog-edge

coordination environments: model and algorithm,” Security and Communication Networks, vol. 2021, article

no. 5563312, 2021. https://doi.org/10.1155/2021/5563312

[12] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and L. Qi, “A computation offloading method over big

data for IoT-enabled cloud-edge computing,” Future Generation Computer Systems, vol. 95, pp. 522-533,

2019. https://doi.org/10.1016/j.future.2018.12.055

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

464 | J Inf Process Syst, Vol.19, No.4, pp.450~464, August 2023

[13] Z. Zhou, H. Liao, B. Gu, S. Mumtaz, and J. Rodriguez, “Resource sharing and task offloading in IoT fog

computing: a contract-learning approach,” IEEE Transactions on Emerging Topics in Computational

Intelligence, vol. 4, no. 3, pp. 227-240, 2020. https://doi.org/10.1109/TETCI.2019.2902869

[14] J. Liu, S. Wang, J. Wang, C. Liu, and Y. Yan, “A task oriented computation offloading algorithm for intelligent

vehicle network with mobile edge computing,” IEEE Access, vol. 7, pp. 180491-180502, 2019. https://doi.

org/10.1109/ACCESS.2019.2958883

Xiuye Yin https://orcid.org/0000-0003-4413-8995
She was born in Xinyang, Henan. P.R. China, in 1984. She received the master’s degree

from university of science and technology Liaoning, P.R. China. Her research interests

include computational intelligence, cloud computing, and big data.

Liyong Chen https://orcid.org/0000-0002-8570-591X
He was born in 1982, male, Chinese, He received master's degree in School of Com-

puter Science and Technology, Faculty of Electronic Information, Liaoning University

of Science and Technology, China, in 2010. He has been teaching at Zhoukou Normal

University since 2010. His research interests include artificial intelligence and data

mining.

