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Abstract

Recently, studies have been conducted on intelligent transportation systems (ITS) that provide safety and convenience to

humans. Systems that compose the ITS adopt architectures that applied the cloud computing which consists of a high-

performance general-purpose processor or graphics processing unit. However, an architecture that only used the cloud

computing requires a high network bandwidth and consumes much power. Therefore, applying edge computing to ITS is

essential for solving these problems. In this paper, we propose an edge artificial intelligence (AI) device based ITS. Edge AI

which is applicable to various systems in ITS has been applied to license plate recognition. We implemented edge AI on a field-

programmable gate array (FPGA). The accuracy of the edge AI for license plate recognition was 0.94. Finally, we synthesized

the edge AI logic with Magnachip/Hynix 180nm CMOS technology and the power consumption measured using the Synopsys’s

design compiler tool was 482.583mW.

Index Terms: Edge AI device, Embedded system, Intelligent transportation system, License plate detection, Character

recognition

I. INTRODUCTION

An intelligent transportation system (ITS) is a next-gener-

ation transportation system that consists of advanced public

transportation, traffic management and automatic parking

management systems. The key feature of ITS is that the sys-

tem has to handle a vast amount of data collected from vari-

ous roads in real-time [1]. Accordingly, many data centers

based on cloud computing with high-performance general-

purpose processors and graphics processing units are

required to store and process the data [2-3]. In addition,

because edge devices send raw data to data centers, high net-

work bandwidth is essential [2]. These characteristics may

cause the system to decrease power efficiency, increase pro-

cessing time, and weaken security.

To overcome these weaknesses, utilizing the concept of

edge computing is one of the solutions [4-5]. Edge compu-

ting is a distributed computing paradigm that processes data

locally and sends the processed data to the central data cen-

ter. This method not only reduces the amount of data

exchanged between the data centers and the edge device, but

also improves the security of the systems because the origi-

nal data is not transmitted to the data centers. Generally,

edge devices have limited power resources and areas owing

to the features of the environment in which the devices are

installed [6]. Therefore, edge devices should be applied to an

embedded system that reduces resource wastage by perform-

ing certain functions to derive the maximum performance.

In this paper, we propose an edge AI device based ITS.

The main contribution of this paper is to increase the power

efficiency and security compared to conventional ITS by

applying edge AI devices. As one of the necessary elements

for implementing ITS is to identify the position and speed of

the vehicle in a real-time environment, we applied an edge
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AI device for license plate recognition in various systems.

Figure 1 represents the concept of edge AI based ITS.

Accordingly, ITS is possible to collect vehicle information

automatically while operating 24h a day with low mainte-

nance costs. We optimized the edge AI device for the license

plate recognition by simulation to improve accuracy, as the

proposed edge AI device consists of a reconfigurable AI fea-

ture [7]. Moreover, we measured the device utili-zation of

edge AI on a field-programmable gate array (FPGA) to ana-

lyze the total logic elements and total memory bits. Finally,

we synthesized the edge AI with Magnachip/Hynix 180 nm

CMOS technology and measured the power consumption of

the edge AI utilizing Synopsys’s design compiler tool of

Synopsys. As a result, we verified that edge AI is suitable

for ITS.

The remainder of this paper is organized as follows. Sec-

tion 2 discusses related work on license plate recognition.

Section 3 shows the system overview, system architecture,

and flow of image preprocessing. Section 4 presents experi-

mental results. Section 5 summarizes the proposed method

and experimental results.

II. RELATED WORK

A. Embedded System

The study in [8] presented license plate recognition based

on YOLOv4. The experiment was conducted on images with

256 × 256 and 608×608 resolutions with the NVIDIA Jetson

TX2 board. The accuracy for over 3000 license plate images

was 0.983 and 0.981, respectively. Additionally, the frame

per second (FPS) was 9.5, and 2.1. On the one hand, the

study in [9] proposed FPGA-based Optical Character Recog-

nition system (OCR) which is designed and tested with

imperfect and noisy license plate images. The OCR system

is based on a feedforward neural network, that uses efficient

and precise neurons. The neuron transfer function is based

on an approximation of the hyperbolic tangent activation

function. The logic element (LE) of the proposed system is

13,909, and the total number of memory bits is 3,519,000.

The accuracy of the dataset consisting of 665 characters is

0.982. An FPGA accelerator based on a convolutional neural

network (CNN) for license plate recognition was proposed in

[10]. Grayscale processing, binarization processing, and

threshold settings were applied to reduce the number of

parameters. The LE of the proposed CNN accelerator was

49,088, and Flip-Flop (FF) was 54,047. The proposed CNN

accelerator is deployed on an Artix-7 development board.

The accuracy was 0.987 and the recognition time was 0.21s.

[11] proposed a system that detected license plate with Tiny

YOLOv3 and identified the characters using an ensemble of

CNN models. The proposed system was implemented on a

Raspberry Pi3 and showed an average time of 4.88s to pro-

cess an image with 1024×768 resolution. The accuracy of

the proposed system is 0.995. The power consumption was

measured at 3.12W when processing uninterruptedly.

B. High-performance Processors

The study in [12] performed license plate detection using

an Improved Bernsen Algorithm and Connected Component

Analysis models, character segmentation with optimal-K

means clustering, and character recognition with a CNN. The

proposed model was accelerated by applying it to a PC with

configurations such as i5, 8th generation, and 16 GB RAM.

It achieved a maximum overall accuracy of 0.981 on the

Stanford Cars dataset. License plate detection and character

segmentation using YOLOv3 were proposed in [13]. To

apply YOLOv3 to more complex scenes, the last number of

layers was changed in the proposed method. Character rec-

ognition was performed using a convolutional recurrent neu-

ral network (CRNN) designed for text recognition. The

accuracy of the proposed method was 0.961 for approxi-

mately 2049 images with NVIDIA 1080Ti. The time required

to process the license plate detection, character segmenta-

tion, and character recognition were 10.211ms, 2.31ms, and

1.59ms each.

III. SYSTEM MODEL AND METHODS

A. System Overview

The system flow for license plate recognition is divided

into three stages: license plate detection, character segmenta-

tion, and character recognition. In general, complex image

processing algorithms that cause long latency are employed

for license plate detection and character recognition in the

license plate recognition process. However, we reduced the

processing time by reducing the character recognition algo-

rithm by employing the characteristics of license plates. We

applied a k-Nearest Neighbor (k-NN) based edge AI to the

character recognition and edge AI performs training and rec-

ognition. The edge AI based on structureless k-NN to over-

come memory limitations and reduce computational complexity

[7]. The system flow of the license plate recognition

designed by workload analysis is shown in Fig. 2. The

Fig. 1. The concept of the edge AI based ITS.
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license plate recognition begins when the edge AI device

receives the entire image through a camera module. A

microprocessor of the edge AI device detects the license

plate on the entire image and segments the characters on the

license plate by utilizing OpenCV-Python. The segmented

characters are transmitted to the edge AI which is employed

for the character recognition. The edge AI compares the

recognition data with training data and outputs a result. In

order to increase the accuracy, we utilized the format of

license plates. Currently, Korean license plates have seven or

eight number of characters. The license plates with seven

characters have Hangul at the 3rd digit and the license plates

with eight characters have Hangul at the 4th digit. According

to the format, numbers are trained only when comparing

numbers and Hangul is trained only when comparing Han-

gul. This increases the accuracy because the edge AI does

not confuse Hangul with numbers.

B. System Architecture

Figure 3 shows a block diagram of the ITS with the edge

AI device. The edge AI device consists of a microprocessor

and edge AI [14]. The microprocessor includes a camera

module to collect the image data, a system core that per-

forms image preprocessing, and a serial peripheral interface

(SPI) for data communication with edge AI. Edge AI con-

sists of a SPI interface for communication with a micropro-

cessor and an AI processor for training and recognition. The

proposed system architecture increases the security of the

ITS because the original data are not restored based on the

resulting data. The interface of edge AI receives external

signals from the system core and forwards the results pro-

cessed by the AI processor to the system core. Modules at

the interface interpret external signals composed of training

or recognition data and command signals. The command sig-

nal consists of 0x60 which is a learning command, 0x40

which is a recognition of 0x40, and 0x83 and 0x84 for

receiving the results. The instruction decoder decodes the

data and sends command signals to the neuron core. The

neuron core includes a scheduler and Neuron cells (N-cell).

The N-cells are registers that store the training data. Since

the sizes and number of N-cell are variable, the edge AI is

optimized according to the application to which the AI pro-

cessor is applied. Depending on the command types, the

scheduler controls the N-cell. In the training process, the

scheduler sequentially inputs the training data into the N-cell

from the first one. The scheduler counts how many N-cells

have been trained each time when the scheduler performs the

training command. When all the existing N-cells have been

trained, the scheduler sends a signal that the N-cell is full

out of the neuron core. During the recognition process, the

scheduler controls all N-cells to compare the recognition

data with the training data. The types of comparative compu-

Fig. 3. The block diagram of ITS with the edge AI device.

Fig. 2. The system flow of the license plate recognition with the edge AI

device.
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tation are divided into Manhattan distance calculation and

Euclidean distance calculation. Equations 1 and 2 represent

the Manhattan distance calculation and Euclidean distance

calculation, respectively, which are the methods of compara-

tive operations. Equation 1 requires only the subtractor, but

Equation 2 requires the subtractor and multiplier. The pro-

cessing time of the multiplier is longer than the processing

time of the subtractor, and the logic size of the multiplier is

larger than that of the subtractor. Accordingly, the multipli-

ers are not suitable for edge AI which is applied to embed-

ded systems. Therefore, the Manhattan distance calculation

is appropriate for edge AI.

(1)

(2)

After the comparison process, each N-cell outputs a cate-

gory and a distance. A classifier aggregates these results and

outputs the results through the k-NN. The results are trans-

mitted to the system core in reverse order of the data coming

in.

Python library code is utilized between the microprocessor

and the edge AI device to communicate with the SPI proto-

col. A function for the learning process compares whether

the size of the learning data is the same as that of the N-cell.

Subsequently, the microprocessor transmits 0x60 which is

the learning command, the length of the learning data

expressed in 16 bits, the learning data, and the learning cate-

gory to edge AI in order. Similarly, the function of the recog-

nition process compares whether the size of the recognition data

is the same as the size as that of the N-cell. Afterwards,

0x40 which is the recognition command, the recognition

data, 0x83 and 0x84 which are the commands to read the

results, are transmitted to receive the result data distance and

category.

C. Image Preprocessing

Figure 4 shows the entire process of image preprocessing.

To decrease the latency of image preprocessing, the micro-

processor performs grayscale conversion which reduces the

amount of data that causes performance degradation. After

that, the microprocessor applied a Gaussian filter with a

3 × 3 kernel size to the image and performed threshold pro-

cessing to clarify the image. The microprocessor finds con-

tours and draws rectangles about the contours like Figure

4(b) and Figure 4(c) based on the clarified image. Figure

4(d) shows the rectangles that can be the characters on the

license plate by comparing the size, location, and arrange-

ment of the rectangles. The sizes of the license plates of the

two vehicles were different from this perspective. The pro-

posed license plate detection method only recognizes the

license plate of the vehicle in front. By analyzing the angle

of the detected license plate, the microprocessor rotates the

image as if it were taken from the front like Figure 4(e). In

order to segment the characters from the license plate, the

characteristic of Hangul has to be consi-dered which are dif-

ferent from English and numbers. As Hangul is a combina-
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The Python library code: SPI communication between the

microprocessor and the edge AI device.

1 import spidev as spi

2 spi = spi.SpiDev()

3 spi.open(0, 0)

4 spi.mode = 3

5 spi.max_speed_hz = 6000000

6 learning_command = 0x60

7 recognition_command = 0x40

8 read_dist = 0x83

9 read_cat = 0x84

10 def learning(train_data, cat):

11 data_len = len(train_data)

12 if (data_len != SIZE_OF_N_CELL):

13 print('vector size does not match')

14 else:

15 len_cmd1 = (data_len - 1) >> 8

16 len_cmd2 = (data_len - 1) & 0xFF

17 spi.xfer([learning_command])

18 spi.xfer([len_cmd1])

19 spi.xfer([len_cmd2])

20 spi.xfer(train_data)

21 spi.xfer([cat])

22 def recognition(test_data):

23 data_len = len(test_data)

24 if (data_len != SIZE_OF_N_CELL):

25 print('vector size does not match')

26 else:

27 len_cmd1 = (data_len - 1) >> 8

28 len_cmd2 = (data_len - 1) & 0xFF

29 spi.xfer([recognition_command])

30 spi.xfer([len_cmd1])

31 spi.xfer([len_cmd2])

32 spi.xfer(test_data)

33 spi.xfer([read_dist])

34 spi.xfer([0])

35 distance1 = spi.xfer([0])

36 distance2 = spi.xfer([0])

37 distance = (distance1[0] << 8) | distance2[0]

38 spi.xfer([read_cat])

39 spi.xfer([0])

40 category = spi.xfer([0])

41 category = (category[0] << 8) + spi.xfer([0])[0]
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tion of consonants and vowels, there are cases in which

consonants and vowels are separated. Therefore, when con-

tours are found in this case, they are searched separately. To

solve this problem, the following steps have to be imple-

mented. Initially, the microprocessor equalizes the size of the

extracted license plate images. Second, the microprocessor

processes a Gaussian filter with a large kernel size for the

image to segment the separated characters into one character.

These processes cause the consonants and vowels to be

always attached even if the microprocessor processes the

same Gaussian filter. The microprocessor finds the contours

and draws rectangles about the contours again, which is a

previously performed task. Based on these rectangles, the

microprocessor segments the characters one by one in the

image using a Gaussian filter with a small kernel size. Figure

4(f) shows an image with a Gaussian filter with a small ker-

nel size of 3×3, and Figure 4(g) shows an image with a

Gaussian filter with a large kernel size. The segmented char-

acters have to be transmitted to the edge AI sequentially.

Therefore, the microprocessor sorts the characters based on

the x-value of the rectangles, crops the characters and resizes

the images. At last, the microprocessor processes a Gaussian

filter with a large kernel size on the image and performs

threshold processing on the image to make the characters

clear, making it similar to the training data. Figure 4(h)

shows the image of each character image transmitted to the

edge AI. The proposed image preprocessing method is feasi-

ble for application to license plates with complex surround-

ings or license plates from other countries.

IV. RESULTS

The size of the entire image affects the detection of license

plates during image preprocessing. Considering the perfor-

mance of the camera used in the edge AI device, the image

sizes to be tested were determined. Figure 4 shows the accu-

racy of detecting license plates when the number of data

points is 500. The results showed that the maximum accu-

racy was 0.994 with 720 × 720 resolution images.

We also analyzed the accuracy of license plate recognition

according to changes in the size and number of N-cells. As

the license plate consisted of a combination of 10 numbers

and 40 Hangul, the number of N-cells was fixed at 64. The

size of the N-cell is the size of the character images that are

segmented through image preprocessing and transmitted to

the edge AI. Therefore, the size of the N-cell affects the

accuracy of the edge AI for the characters. We simulated

various N-cell sizes to optimize the edge AI for license plate

recognition. After the characters were segmented by image

preprocessing, the number of numeric data was 3024 and the

number of Hangul data was 497. We set different kernel

sizes for the Gaussian filter for each character image on the

license plate and analyzed the maximum accuracy of each

character image. Table 1 shows the simulation results for

various N-cell sizes of the edge AI. The accuracy for num-

bers was about 0.99, but the accuracy for Hangul showed a

significant difference. The highest accuracy of the edge AI

device for the license plate recognition was 0.94 when the

size of N-cell was 32 × 64. Additionally, the size of the N-

Fig. 4. Entire process of image preprocessing.

Fig. 5. The accuracy of license plate detection according to the image

sizes.
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cell does not significantly increase the processing time.

We implemented edge AI logic on the DE2-115 board.

Table 2 shows the resource utilization of edge AI. The mem-

ory bits of the edge AI exceeded when the size and number

of N-cell were 8192 × 64 and 32768 × 64, respectively. Con-

sidering the accuracy and device utilization, we fixed the

size and number of N-cell to 2048 × 64. The number of logic

elements was 15,345. We synthesized edge AI logic with

Magnachip/Hynix 180 nm CMOS technology. The total

dynamic power measured using the Synopsys’s design com-

piler tool was 482.583 mW when the clock frequency was

50MHz. Based on the experimental results, it can be con-

cluded that the proposed edge AI device is appropriate for

license plate recognition.

Figure 6 shows the experimental environment. We con-

nected the microprocessor, Raspberry Pi 4, and the field pro-

grammable gate array (FPGA) board, DE2-115, through

GPIO. At the start of the experiment, the microprocessor

performed the image preprocessing and transmitted the data

to the FPGA. Edge AI processed the data and transmitted the

recognition result to the microprocessor. The accuracy was

the same as that of the software simulation results, and the

FPS was 2.01. The increase in processing time was due to

the difference in clock frequency and CPU performance.

Comparing the experimental results of the edge AI device

with the figures of license plate recognition for embedded

systems described in the related work, the accuracy was sim-

ilar while FPS and power consumption were lower. Finally,

we simulated the alphabet to analyze the applicability of the

edge AI device to English license plates, and the accuracy

was 0.904 with a 32×64 resolution.

V. DISCUSSION AND CONCLUSIONS

In this paper, we proposed an edge AI device based ITS.

An edge AI device was employed for license plate recogni-

tion to increase the power efficiency and decrease the pro-

cessing time of ITS. We optimized the edge AI for license

plate recognition by simulation for the various sizes of N-

cells to increase accuracy. When the size of the N-cell was

32 × 64, the accuracy was the highest at 0.94, and the FPS

was 21.803. Additionally, we implemented edge AI logic on

the FPGA and analyzed the total logic elements and total

memory bits. When the size and number of N-cell were

32×64 and 64, respectively, the total number of logic ele-

ments was 15,345, and the total number of memory bits was

1,084,576. We synthesized the edge AI with Magnachip/

Hynix 180nm CMOS technology and the dynamic power

consumption measured using the Synopsys’s design compiler

tool was 482.583mW. The total accuracy of the hardware

verification was the same as that of the software simulation

results.
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Fig. 6. Experimental environment.

Table 2. Summary of resource utilization.

N-cell spec Total logic elements Total memory bits

128 × 64 13,479 / 114,480 (12%) 65,536 / 3,981,312 (2%)

512 × 64 13,995 / 114,480 (12%) 65,536 / 3,981,312 (2%)

2048 × 64 15,345 / 114,480 (13%) 1,048,576 / 3,981,312 (26%)

8192 × 64 15,770 / 114,480 (14%) 8,388,608 / 3,981,312 (211%)

Table 1. Figures of simulation results.

N-cell size
Number 

accuracy

Hangul 

accuracy

Total 

accuracy

License plate 

detection time

Character 

segmentation time

Character 

recognition time

Processing 

time
FPS

8 × 16 0.985 0.734 0.678 30.406ms 0.61ms 9.926ms 40.91ms 24.443

16 × 32 0.992 0.963 0.928 28.544ms 0.612ms 13.566ms 42.61ms 23.468

32 × 64 0.992 0.981 0.94 25.394ms 0.599ms 19.872ms 45.865ms 21.803

64 × 128 0.991 0.971 0.93 28.087ms 0.606ms 47.548ms 81.695ms 12.24

128 × 256 0.991 0.965 0.922 39.538ms 0.702ms 207.746ms 247.986ms 4.032

Simulated with Intel core i5-4590 CPU and 4GB RAM
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