• 제목/요약/키워드: Edge Dislocation

검색결과 45건 처리시간 0.023초

The effects of different factors on obstacle strength of irradiation defects: An atomistic study

  • Pan-dong Lin;Jun-feng Nie;Yu-peng Lu;Gui-yong Xiao;Guo-chao Gu;Wen-dong Cui;Lei He
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2282-2291
    • /
    • 2024
  • In this work we study the effects of different factors of dislocation loop on its obstacle strength when interacting with an edge dislocation. At first, the interaction model for dislocation and dislocation loop is established and the full and partial absorption mechanism is obtained. Then, the effect of temperature, size and burgers vector of dislocation loop are investigated. The relation between the obstacle strength and irradiation dose has been established, which bridges the irradiation source and microscale properties. Except that, the obstacle strength of C, Cr, Ni, Mn, Mo and P decorated dislocation loop is studied. Results show that the obstacle strength for dislocation loop decorated by alloy element decreases in the sequence of Cr, Ni, Mn, C, P and Mo, which could be used to help parameterize and validate crystal plasticity finite element model and therein integrated constitutive laws to enable accounting for irradiation-induced chemical segregation effects.

R. F. Sputter법으로 성장된 AIN 완충층이 GaN 박막결함에 미치는 영향 (Effect of AIN Buffers by R. F. Sputter on Defects of GaN Thin films)

  • 이민수
    • 한국전기전자재료학회논문지
    • /
    • 제17권5호
    • /
    • pp.497-501
    • /
    • 2004
  • The crystal structure of the GaN film on the AIN buffer layer grown by R. F sputtering with different thickness has been studied using X-ray scattering and transmission electron microscopy(TEM). The interface roughness between the AIN buffer layer and the epitaxial GaN film, due to crossover from planar to island grains, produced edge dislocations. The strain, coming from lattice mismatch between the AIN buffer layer and the epitaxial GaN film, produced screw dislocations. The density of the edge and screw dislocation propagating from the interface between the GaN film and the AIN buffer layer affected the electric resistance of GaN film.

가속기 백색광 X-Ray Topography를 이용한 CVD 단결정 다이아몬드 내부 전위 분석 (Dislocation Analysis of CVD Single Crystal Diamond Using Synchrotron White Beam X-Ray Topography)

  • 유영재;정성민;배시영
    • 한국전기전자재료학회논문지
    • /
    • 제32권3호
    • /
    • pp.192-195
    • /
    • 2019
  • Single-crystal diamond obtained by chemical vapor deposition (CVD) exhibits great potential for use in next-generation power devices. Low defect density is required for the use of such power devices in high-power operations; however, plastic deformation and lattice strain increase the dislocation density during diamond growth by CVD. Therefore, characterization of the dislocations in CVD diamond is essential to ensure the growth of high-quality diamond. In this work, we analyze the characteristics of the dislocations in CVD diamond through synchrotron white beam X-ray topography. In estimate, many threading edge dislocations and five mixed dislocations were identified over the whole surface.

전위모델 을 이용한 2차원 응력해석 (2-D Stress Analysis by a Dislocation Model)

  • 구인회
    • 대한기계학회논문집
    • /
    • 제9권1호
    • /
    • pp.10-17
    • /
    • 1985
  • 본 논문의 목적은 앞서의 크랙대신 2차원 탄성문제의 경계를 따라 절편적인 전위(discrete edge dislocation)를 분포시켜 경계응력과 평형을 이루는 전위벡타의 크기를 얻고 이들로 부터 영역내 임의의 점에서 응력을 얻는데 있다. 크랙에 대한 전위이론의 적용에서와는 달리 여기서는 경계가 폐곡선을 이루므로 이에따른 전위분 포 방법이 논의 되었다. 또한 이 방법의 실용성을 알기위해 4가지 경우에 적용되 어 얻어진 수치해의 특성이 개별적으로 검토 되었다. 이들 경우에 대해서는 전위 분포법이 유한요소법에 비해 효율적이었다. 이 방법의 확장, 개선점, 일반적인 평 가 특히 계산능률면에서 다른 수치적 방법과의 광범위한 비교평가등이 앞으로 연구될 수 있는 과제라고 판단된다.

고온에서 미세입자를 가진 석출경화형 Al-0.55 wt% Zr 합금의 Threshold 응력과 전위/입자의 상호 작용에 관한 연구 (Dislocation/Particles Interaction and Threshold Stress in Precipitation-Hardened Al-0.55 wt% Zr Alloy with Fine Particles at High-Temperature)

  • 김병일;나카지마 히데하루
    • 열처리공학회지
    • /
    • 제5권4호
    • /
    • pp.201-208
    • /
    • 1992
  • An experimental study of the constitutive response of precipitation-strengthened Al-0.55wt% Zr alloy, which consists of an Al matrix precipitation-strengthened by coherent particles, ${\beta}^{\prime}(Al_3Zr)$ with $L1_2$ structure has been performed. The deformation response of the materials has been examined by stress relaxation test at 573K, 623K and 673K. It was found that there exist the threshold stress during stress relaxation and threshold stress results from the presense of ${\beta}^{\prime}(Al_3Zr)$ particles. The ratio of threshold stress and Orowan stress decreased gradually with increasing temperature. The resistance to climb-pass of particles was independent of particles size for a fixed volume fraction although the threshold for bowing and particles cutting are sensitive to the particles dimensions. The smaller particles cutted by dislocations. This behavior of dislocations in this alloy was explained in terms of the small value antiphase boundary energy. The dislocation networks wrere more extensive in spesimens subjected to stress relaxation and there were numerous areas that have a high denstiy of jogged dislocation. This experiment results indicate that the rate controlling stress relaxation process is the climb of edge dislocation over particles.

  • PDF

Dislocation-oxide interaction in Y2O3 embedded Fe: A molecular dynamics simulation study

  • Azeem, M. Mustafa;Wang, Qingyu;Li, Zhongyu;Zhang, Yue
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.337-343
    • /
    • 2020
  • Oxide dispersed strengthened (ODS) steel is an important candidate for Gen-IV reactors. Oxide embedded in Fe can help to trap irradiation defects and enhances the strength of steel. It was observed in this study that the size of oxide has a profound impact on the depinning mechanism. For smaller sizes, the oxide acts as a void; thus, letting the dislocation bypass without any shear. On the other hand, oxides larger than 2 nm generate new dislocation segments around themselves. The depinning is similar to that of Orowan mechanism and the strengthening effect is likely to be greater for larger oxides. It was found that higher shear deformation rates produce more fine-tuned stress-strain curve. Both molecular dynamics (MD) simulations and BKS (Bacon-Knocks-Scattergood) model display similar characteristics whereby establishing an inverse relation between the depinning stress and the obstacle distance. It was found that (110)oxide || (111)Fe (oriented oxide) also had similar characteristics as that of (100)oxide || (111)Fe but resulted in an increased depinning stress thereby providing greater resistance to dislocation bypass. Our simulation results concluded that critical depinning stress depends significantly on the size and orientation of the oxide.

Stress intensity factors for periodic edge cracks in a semi-infinite medium with distributed eigenstrain

  • Afsar, A.M.;Ahmed, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제21권1호
    • /
    • pp.67-82
    • /
    • 2005
  • This study analyzes stress intensity factors for a number of periodic edge cracks in a semiinfinite medium subjected to a far field uniform applied load along with a distribution of eigenstrain. The eigenstrain is considered to be distributed arbitrarily over a region of finite depth extending from the free surface. The cracks are represented by a continuous distribution of edge dislocations. Using the complex potential functions of the edge dislocations, a simple as well as effective method is developed to calculate the stress intensity factor for the edge cracks. The method is employed to obtain the numerical results of the stress intensity factor for different distributions of eigenstrain. Moreover, the effect of crack spacing and the intensity of the normalized eigenstress on the stress intensity factor are investigated in details. The results of the present study reveal that the stress intensity factor of the periodic edge cracks is significantly influenced by the magnitude as well as distribution of the eigenstrain within the finite depth. The eigenstrains that induce compressive stresses at and near the free surface of the semi-infinite medium reduce the stress intensity factor that, in turn, contributes to the toughening of the material.

Multiple unequal cracks between an FGM orthotropic layer and an orthotropic substrate under mixed mode concentrated loads

  • M. Hassani;M.M. Monfared;A. Salarvand
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.535-546
    • /
    • 2023
  • In the present paper, multiple interface cracks between a functionally graded orthotropic coating and an orthotropic half-plane substrate under concentrated loading are considered by means of the distribution dislocation technique (DDT). With the use of integration of Fourier transform the problem is reduced to a system of Cauchy-type singular integral equations which are solved numerically to compute the dislocation density on the surfaces of the cracks. The distribution dislocation is a powerful method to calculate accurate solutions to plane crack problems, especially this method is very good to find SIFs for multiple unequal cracks located at the interface. Hence this technique allows considering any number of interface cracks. The primary objective of this paper is to investigate the effects of the interaction of multiple interface cracks, load location, material orthotropy, nonhomogeneity parameters and geometry parameters on the modes I and II SIFs. Numerical results show that modes I/II SIFs decrease with increasing the nonhomogeneity parameter and the highest magnitude of SIF occurs where distances between the load location and crack tips are minimal.

가지친 표면크랙의 응력확대계수 (Stress Intensity Factors for Branched Edge Cracks)

  • 구인회
    • 대한기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.257-264
    • /
    • 1986
  • 무한평판에 묻혀진 크랙에 대한 응력확대계수를 결정하는 전위분포법을 반무한 평판에서의 표면크랙에 확장 적용하였다. 이를 위해 반평면에서의 전위응력의 기본 해가 간단한 복소수 응력함수형태로 얻어졌다. 평형을 이루는 절편적인 분포로부터 응력확대의 계수를 계산하는 새로운 방식을 제안하였으며, 수직표면 크랙과 묻혀진 경사크랙에 대한 기존해와 이 방법의 결과가 상호 비교되었다. 경사진 표면크랙에 대한 계산결과는 유한평판에서의 기존하는 Mapping Collocation 해석과 비교되어 좋은 일치를 보여 주었다. 구부러진 크랙과 대칭으로 가지친 크랙에 대해서는 표면크랙과 묻혀진 크랙사이에 상당한 차이가 있음이 나타났다.

KOH Etching을 통한 4H-SiC Epitaxy 박막에서의 전위결함 거동 (Characterization of Dislocations in 4H-SiC Epitaxy Using Molten-KOH Etching)

  • 신윤지;김원정;문정현;방욱
    • 한국전기전자재료학회논문지
    • /
    • 제24권10호
    • /
    • pp.779-783
    • /
    • 2011
  • The morphology of etch pits in commercial 4H-SiC epi-wafer were investigated by molten-KOH etching. The etching process was optimized in $525{\sim}570^{\circ}C$ at 2~10 min and the novel type of etch pits was revealed. This type of etch pits have been considered as TED (threading edge dislocation) II, its origin and nature, however, are not reported yet. In this work, the morphology and evolution of etch pits during epitaxial growth were analyzed and the different behavior between TED and TEDII was discussed.