DOI QR코드

DOI QR Code

Dislocation Analysis of CVD Single Crystal Diamond Using Synchrotron White Beam X-Ray Topography

가속기 백색광 X-Ray Topography를 이용한 CVD 단결정 다이아몬드 내부 전위 분석

  • Yu, Yeong-Jae (Energy and Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Seong-Min (Energy and Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Bae, Si-Young (Energy and Environment Division, Korea Institute of Ceramic Engineering and Technology)
  • 유영재 (한국세라믹기술원 에너지환경본부) ;
  • 정성민 (한국세라믹기술원 에너지환경본부) ;
  • 배시영 (한국세라믹기술원 에너지환경본부)
  • Received : 2019.01.31
  • Accepted : 2019.02.12
  • Published : 2019.05.01

Abstract

Single-crystal diamond obtained by chemical vapor deposition (CVD) exhibits great potential for use in next-generation power devices. Low defect density is required for the use of such power devices in high-power operations; however, plastic deformation and lattice strain increase the dislocation density during diamond growth by CVD. Therefore, characterization of the dislocations in CVD diamond is essential to ensure the growth of high-quality diamond. In this work, we analyze the characteristics of the dislocations in CVD diamond through synchrotron white beam X-ray topography. In estimate, many threading edge dislocations and five mixed dislocations were identified over the whole surface.

Keywords

JJJRCC_2019_v32n3_192_f0001.png 이미지

Fig. 1. Camera image of CVD single-crystal diamond. Size of sample is 5.0×5.0×0.3 mm3.

JJJRCC_2019_v32n3_192_f0002.png 이미지

Fig. 2. Visible Raman spectra (wavelength: 532 nm) obtained from (001) surface of the CVD diamond, confirming the growth of single-crystalline diamond.

JJJRCC_2019_v32n3_192_f0003.png 이미지

Fig. 3. XRD peaks of the CVD diamond single crystal. (a) 2 theta and (b) omega scan.

JJJRCC_2019_v32n3_192_f0004.png 이미지

Fig. 4. Top-view schematic of the setup for analyzing dislocations at the CVD diamond which was measured by rotating 90˚ clockwise with respect to the [110] direction.

JJJRCC_2019_v32n3_192_f0005.png 이미지

Fig. 5. X-ray topography projection images of (001)-oriented CVD single-crystal CVD diamond for (a) g = (1$dseg=\overline{1}$3), (b) g = (113), (c) g = ($dseg=\overline{1}$13), and (d) g = ($dseg=\overline{11}$3).

JJJRCC_2019_v32n3_192_f0006.png 이미지

Fig. 6. Three-dimensional schematic diagram showing threading edge (green) and mixed (red) dislocations (t=[001]) and their burgers vectors (b1 and b2) present in the CVD diamond.

Table 1. Combinations of the diffraction vector (g), burgers vector (b) and SWBXRT image contrast for the dislocations in the diamond structure.

JJJRCC_2019_v32n3_192_t0001.png 이미지

References

  1. J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, Science, 297, 1670 (2002). [DOI: https://doi.org/10.1126/science.1074374]
  2. K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D. J. Twitchen, G. A. Scarsbrook, and S. E. Coe, IEEE Electron Device Lett., 27, 570 (2006). [DOI: https://doi.org/10.1109/LED.2006.876325]
  3. M. Kasu, K. Ueda, H. Ye, Y. Yamauchi, S. Sasaki, and T. Makimoto, Electron. Lett., 41, 1249 (2005). [DOI: https://doi.org/10.1049/el:20053194]
  4. M. Kasu, M. Kubovic, A. Aleksov, N. Teofilov, Y. Taniyasu, R. Sauer, E. Kohn, T. Makimoto, and N. Kobayashi, Diamond Relat. Mater., 13, 226 (2004). [DOI: https://doi.org/10.1016/j.diamond.2003.10.025]
  5. S. Ohmagari, T. Teraji, and Y. Koide, J. Appl. Phys., 110, 056105 (2011). [DOI: https://doi.org/10.1063/1.3626791]
  6. M. Saremi, R. Hathwar, M. Dutta, F.A.M. Koeck, R. J. Nemanich, S. Chowdhury, and S. M. Goodnick, Appl. Phys. Lett., 111, 043507 (2017). [DOI: https://doi.org/10.1063/1.4986756]
  7. L.T.M. Hoa, T. Ouisse, D. Chaussende, M. Naamoun, A. Tallaire, and J. Achard, Cryst. Growth Des., 14, 5761 (2014). [DOI: https://doi.org/10.1021/cg5010193]
  8. L. Rondin, J. P. Tetienne, T. Hingant, J. F. Roch, P. Maletinsky, and V. Jacques, Rep. Prog. Phys., 77, 056503 (2014). [DOI: https://doi.org/10.1088/0034-4885/77/5/056503]
  9. J. Achard, F. Silva, A. Tallaire, X. Bonnin, G. Lombardi, K. Hassouni, and A. Gicquel, J. Phys. D: Appl. Phys., 40, 6175 (2007). [DOI: https://doi.org/10.1088/0022-3727/40/20/S04]
  10. N. Tranchant, M. Nesladek, D. Tromson, Z. Remes, A. Bogdan, and P. Bergonzo, Phys. Status Solidi A, 204, 3023 (2007). [DOI: https://doi.org/10.1002/pssa.200776342]
  11. S. A. Solin and A. K. Ramdas, Phys. Rev. B, 1, 1687 (1970). [DOI: https://doi.org/10.1103/PhysRevB.1.1687]
  12. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968) p. 285.
  13. Y. Kato, H. Umezawa, H. Yamaguchi, and S. Shikata, Jpn. J. Appl. Phys., 51, 090103 (2012). [DOI: https://doi.org/10.1143/JJAP.51.090103]