• 제목/요약/키워드: Economic marine algae

검색결과 28건 처리시간 0.024초

동해와 남해 연안에 서식하는 군소(Aplysia kurodai) 서식지 주변의 해조상과 위 내용물 조성 (Composition of the Stomach Contents and Marine Algal Flora Around Sea Hare Aplysia kurodai Habitats in the East and South Coast of Korea)

  • 김민주;김남길
    • 한국수산과학회지
    • /
    • 제56권1호
    • /
    • pp.66-78
    • /
    • 2023
  • The sea hare Aplysia kurodai is an economic species located along the Korean coast. This study aimed to investigate the stomach contents of A. kurodai and its relationship with marine algal flora surrounding their habitat. A. kurodai and marine algae were sampled in seven and five areas in the East and the South seas, respectively. The marine algae found in the stomach and surrounding marine habitat were identified. In the East Sea of Korea, 134 species of seaweed were recorded. Thirty-nine species of marine algae were identified in the stomach contents of A. korudai collected from the East Sea of Korea. Seventy-five species of seaweed were collected in the South Sea of Korea. In addition, 26 species of marine algae were identified in the stomach contents of A. kurodai from the South Sea of Korea. Among the stomach contents of A. kurodai, ten sheet,12 filamentous, 27 coarsely branched, and one jointed calcareous form species were identified.

Holocarpic oomycete parasites of red algae are not Olpidiopsis, but neither are they all Pontisma or Sirolpidium (Oomycota)

  • Giuseppe C. Zuccarello;Claire M. M. Gachon;Yacine Badis;Pedro Murua;Andrea Garvetto;Gwang Hoon Kim
    • ALGAE
    • /
    • 제39권1호
    • /
    • pp.43-50
    • /
    • 2024
  • Oomycetes are ubiquitous heterotrophs of considerable economic and ecological importance. Lately their diversity in marine environments has been shown to be greatly underappreciated and many lineages of intracellular holocarpic parasites, infecting micro- and macro-algae, remain to be fully described taxonomically. Among them, pathogens of marine red algae have been studied extensively as they infect important seaweed crops. Throughout the 20th century, most intracellular, holocarpic biotrophic oomycetes that infect red algae have been assigned to the genus Olpidiopsis Cornu. However, 18S rRNA sequencing of Olpidiopsis saprolegniae, the species considered the generitype for Olpidiopsis, suggests that this genus is not closely related to the marine pathogens and that the latter requires a nomenclatural update. Here, we compile and reanalyze all recently published 18S rRNA sequence data for marine holocarpic oomycetes, with a particular focus on holocarpic pathogens of red algae. Their taxonomy has been revised twice over the past four years, with suggestions to transfer them first into the genus Pontisma and then Sirolpidium, and into a monogeneric order, Pontismatales. We show however, that previously published topologies and the proposed taxa Pontisma, Sirolpidium, and Pontismatales are unsupported. We highlight that name changes that are unfounded and premature create confusion in interested parties, especially concerning pathogens of marine red algae that infect important seaweed crops. We thus propose that the names of these holocarpic biotrophic parasites of red algae are retained temporarily, until a supported topology is produced with more genetic markers to enable the circumscription of species and higher-level taxa.

New record of three economic Hypnea species (Gigartinales) in Korea

  • Kang, Pil Joon;Nam, Ki Wan
    • Fisheries and Aquatic Sciences
    • /
    • 제21권11호
    • /
    • pp.31.1-31.7
    • /
    • 2018
  • Three economic marine algae that have been used as food and carrageenan sources were collected from Korea during a survey of marine algal flora. They share the generic features of Hypnea, and three major clades supported by the sectional features were confirmed in a phylogenetic tree based on rbcL sequences. The first species, which belongs to a species group corresponding to the sect. Spinuligerae, nests in the same clade with Hypnea yamadae in a genetic distance of 0%. It is morphologically characterized by an entangled base, subcompressed or subterete to terete axes, somewhat percurrent main axis, irregularly alternately branching with wide angle, and rarely hooked spinous branchlets. The second one is also referred to the sect. Spinuligerae and formed the same clade as Hypnea cenomyce. The genetic distance between both sequences was calculated as 0.0-0.1%, which is considered to be intraspecific. This species is distinct by somewhat entangled thallus at the basal part, percurrent axis, short spine-like branchlets densely covering the axis, and medullary lenticular thickenings. The third alga, which forms a species group corresponding to the sect. Pulvinatae, nests in the same clade as Hypnea nidulans (no intraspecific divergence). It shows occasionally epiphytic habitat rather than epilithic habitat of low mat-forming growth and percurrent erect main axes with dense lateral branchlets. Based on these morphological and molecular data, the three Korean species are identified as H. yamadae, H. cenomyce, and H. nidulans. This is the first record of the Hypnea species in Korea.

Genetic diversity and distribution of edible scytosiphonacean algae from Ulleungdo Island, Korea

  • Lee, Ju Il;Jang, Hyeong Seok;Cho, Ga Youn;Yoon, Sung Jin;Boo, Sung Min
    • ALGAE
    • /
    • 제34권3호
    • /
    • pp.229-236
    • /
    • 2019
  • Despite the abundance of seaweeds from Ulleungdo Island, genetic diversity and distribution of edible brown algae from the island remain unstudied. We analyzed mitochondrial cox3 sequences from 86 specimens collected in the island and from the nearby Korean Peninsula. Our cox3 phylogeny for the first time confirmed the occurrence of fives species from Ulleungdo Island; Petalonia binghamiae, P. fascia, Planosiphon zosterifolius, and two cryptic species previously identified as Scytosiphon lomentaria. P. binghamiae was relatively homogeneous with three haplotypes. P. fascia comprised four haplotypes, which were grouped into two genetic lineages. S. lomentaria was heterogeneous with nine haplotypes and was divided into two cryptic species; one species clustered with taxa from cold waters while the other clustered with taxa from temperate and cold waters. Low genetic diversity in P. binghamiae while high genetic diversity in S. lomentaria from Ulleungdo Island are comparable to patterns observed from other species from the Korean peninsula. Ulleungdo Island, although small in size, is an ideal field laboratory to investigate genetic diversity and distributions of economic marine algae.

감태 양식사업의 경제성 분석 (Economic Analysis of Ecklonia cava Aquaculture Business)

  • 강석규
    • 수산경영론집
    • /
    • 제44권2호
    • /
    • pp.69-81
    • /
    • 2013
  • The purpose of this study is to examine the economic validity of Ecklonia cava aquaculture business for raising fishing people's revenue. The results of this study are summarized as follows: First, the production of Ecklonia cava is estimated about 251 ton or more in Jeju. Second, the distribution structure of Ecklonia cava is not established, but Ecklonia cava is traded much more through bio or processing corporation than through fisheries cooperative like other marine plants. Third, the price of Ecklonia cava should be at least 1,729 won per kilogram under 4.04% of capital cost for economic feasibility of Ecklonia cava aquaculture business. Finally, the results of sensitivity analysis show that there is economic feasibility of Ecklonia cava aquaculture business when the price of Ecklonia cava is more 2,500 won per kilogram and the capital cost is under 8.0%.

Effects of biostimulants, AMPEP and Kelpak on the growth and asexual reproduction of Pyropia yezoensis (Bangiales, Rhodophyta) at different temperatures

  • Sook Kyung Shin;Qikun Xing;Ji-Sook Park;Charles Yarish;Fanna Kong;Jang K. Kim
    • ALGAE
    • /
    • 제39권1호
    • /
    • pp.31-41
    • /
    • 2024
  • Acadian marine plant extract powder (AMPEP) and Kelpak are commercial biostimulants derived from brown algae Ascophyllum nodosum. This study was to determine if AMPEP and Kelpak can induce thermal resistance in Pyropia yezoensis. P. yezoensis blades were exposed to different concentrations (control: 0, low: 0.001, high: 1 ppm) of AMPEP and Kelpak at 10℃ for 6 and 7 days, respectively. Those blades were then cultivated in von Stosch enriched seawater medium at different temperatures (10, 15, 20, and 25℃) with 12 : 12 L : D photoperiod and 100 µmol m-2 s-1 of photosynthetically active radiation for additional 15 days. Results showed that P. yezoensisreproduced archeospores at 20 and 25℃ at all biostimulant conditions within 15 days. At lower temperatures (10 and 15℃), only AMPEP-treated P. yezoensis reproduced archeospores. P. yezoensis exposed to 1 ppm Kelpak exhibited higher phycoerythrin and phycocyanin contents than control and 0.001 ppm conditions at 15℃. AMPEP-treated conditions showed higher phycoerythrin and phycocyanin contents than control at 10℃. These results suggest that AMPEP and Kelpak may not enhance the thermal resistance of P. yezoensis. However, AMPEP stimulated archeospores release at lower temperatures. The treatment of AMPEP and Kelpak also increased the pigment contents in P. yezoensis. These results suggest that the use of seaweed-derived biostimulants can provide some economic benefits in P. yezoensis aquaculture. The enhancement of archeospores formation by AMPEP at lower temperature may also increase the productivity since Pyropia farming relies on the accumulation of secondary seedings via asexual reproduction.

해양조류로부터 바이오에너지 생산 : 현황 및 전망 (Production of Bio-energy from Marine Algae: Status and Perspectives)

  • 박재일;우희철;이재화
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.833-844
    • /
    • 2008
  • 바이오에너지는 화석연료의 소비를 감소시키는 기회를 제공한다. 태양, 바람, 수력발전 및 지열, 그리고 바이오매스 자원으로부터 생성된 에너지는 재생이 가능하다. 대부분의 바이오에너지들은 태양으로부터 직 간접적으로 생산되기 때문에 화석연료와 달리 신재생에너지의 충분한 공급이 가능하다. 또한 바이오에너지의 이용은 환경적인 측면 뿐 아니라 정치, 경제적으로 이익을 제공한다. 바이오에너지는 이산화탄소의 순증가가 없고 무공해의 에너지 형태를 제공하는 해양 자원으로부터 생산 될 수 있다. 본 총설에서는 지구의 약 75%가 바다로 이루어져 있음을 고려해 볼 때 바이오에너지 생산을 위한 해양 바이오매스의 잠재력에 대해 검토한다.

Physiological response of red macroalgae Pyropia yezoensis (Bangiales, Rhodophyta) to light quality: a short-term adaptation

  • Xuefeng Zhong;Shuai Che;Congying Xie;Lan Wu;Xinyu Zhang;Lin Tian;Chan Liu;Hongbo Li;Guoying Du
    • ALGAE
    • /
    • 제38권2호
    • /
    • pp.141-150
    • /
    • 2023
  • Light quality is a common environmental factor which influences the metabolism of biochemical substances in algae and leads to the response of algal growth and development. Pyropia yezoensis is a kind of economic macroalgae that naturally grows in the intertidal zone where the light environment changes dramatically. In the present study, P. yezoensis thalli were treated under white light (control) and monochromatic lights with primary colors (blue, green, and red) for 14 days to explore their physiological response to light quality. During the first 3 days of treatment, P. yezoensis grew faster under blue light than other light qualities. In the next 11 days, it showed better adaptation to green light, with higher growth rate and photosynthetic capacity (reflected by a higher rETRmax = 61.58 and Ek = 237.78). A higher non-photochemical quenching was observed in the treatment of red light than others for 14 days. Furthermore, the response of P. yezoensis to light quality also results in the difference of photosynthetic pigment contents. The monochromatic light could reduce the synthesis of all pigments, but the reduction degree was different, which may relate to the spectral absorption characteristics of pigments. It was speculated that P. yezoensis adapted to a specific or changing light environments by regulating the synthesis of pigments to achieve the best use of light energy in photosynthesis and premium growth and metabolism.

Application of Seaweed Cultivation to the Bioremediation of Nutrient-Rich Effluent

  • Chung, Ik-Kyo;Kang, Yun-Hee;Charles Yarish;George P. Kraemer;Lee, Jin-Ae
    • ALGAE
    • /
    • 제17권3호
    • /
    • pp.187-194
    • /
    • 2002
  • A seaweed biofilter/production system of being developed to reduce the environmental impact of marine fish farm effluent in coastal ecosystems as a part of an integrated aquaculture system. Several known seaweed taxa and their cultivars have been considered as candidate biofilter organisms based on their species-specific physiological properties such as nutrient uptake kinetics and their economic value. Porphyra is an excellent cadidate and shows efficient nutrient extraction properties. Rates of ammonium uptake were maintained at around 3 ${\mu}moles{\cdot}g{\cdot}dw^{-1}{\cdot}min^{-1}$ at 150 ${\mu}M$ inorganic nitrogen at $10^{\circ}C$. Ulva is another possible biofilter candidate with an uptake rate of 1.9 ${\mu}moles{\cdot}g{\cdot}dw^{-1}{\cdot}min^{-1}$ under same conditions. A simple uptake/growth and harvest model was applied to estimate the efficiency of the biofilter/production system. The model was deterministic and used a compartment model structure based on difference equations. The efficiency of Porpyra filter was estimated over 17% of ${NH_4}^+$ removal from the contimuous supply of 100 ${\mu}mole{\cdot}l^{-1}\;{NH_4}^+\;at\;100l{\cdot}sec^{-1}$ flow rate.

Physiological and transcriptome analysis of acclimatory response to cold stress in marine red alga Pyropia yezoensis

  • Li-Hong Ma;Lin Tian;Yu-Qing Wang;Cong-Ying Xie;Guo-Ying Du
    • ALGAE
    • /
    • 제39권1호
    • /
    • pp.17-30
    • /
    • 2024
  • Red macroalga Pyropia yezoensis is a high valuable cultivated marine crop. Its acclimation to cold stress is especially important for long cultivation period across winter in coasts of warm temperate zone in East Asia. In this study, the response of P. yezoensis thalli to low temperature was analyzed on physiology and transcriptome level, to explore its acclimation mechanism to cold stress. The results showed that the practical photosynthesis activity (indicated by ΦPSII and qP) was depressed and pigment allophycocyanin content was decreased during the cold stress of 48 h. However, the Fv/Fm and non-photochemical quenching increased significantly after 24 h, and the average growth rate of thalli also rebounded from 24 to 48 h, indicating a certain extent of acclimation to cold stress. On transcriptionally, the low temperature promoted the expression of differentially expressed genes (DEGs) related to carbohydrate metabolism and energy metabolism, while genes related to photosynthetic system were depressed. The increased expression of DEGs involved in ribosomal biogenesis and lipid metabolism which could accelerate protein synthesis and enhance the degree of fatty acid unsaturation, might help P. yezoensis thallus cells to cope with cold stress. Further co-expression network analysis revealed differential expression trends along with stress time, and corresponding hub genes play important roles in the systemic acquired acclimation to cold stress. This study provides basic mechanisms of P. yezoensis acclimation to cold temperature and may aid in exploration of functional genes for genetic breeding of economic macroalgae.