Acknowledgement
This study was financially supported by National Key R&D Program of China (2022YFD2400105, 2020YFD0900702, 2020YFA0607600). We thank Prof. Ik Kyo Chung (Pusan National University, Korea) and Christine Dupuy (La Rochelle University, France) for their improvement of this manuscript.
References
- Adir, N. 2005. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth. Res. 85:15-32. https://doi.org/10.1007/s11120-004-2143-y
- Aguilera, J., Francisco, J., Gordillo, L., Karsten, U., Figueroa, F. L. & Niell, F. X. 2000. Light quality effect on photosynthesis and efficiency of carbon assimilation in the red alga Porphyra leucosticta. J. Plant Physiol. 157:86-92. https://doi.org/10.1016/S0176-1617(00)80140-6
- Aronoff, S. 1950. The absorption spectra of chlorophyll and related compounds. Chem. Rev. 47:175-195. https://doi.org/10.1021/cr60147a001
- Baker, N. R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59:89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
- Barsanti, L., Evangelista, V., Frassanito, A. M., Vesentini, N., Passarelli, V. & Gualtieri, P. 2007. Absorption microspectroscopy, theory and applications in the case of the photosynthetic compartment. Micron 38:197-213. https://doi.org/10.1016/j.micron.2006.07.015
- Barufi, J. B., Figueroa, F. L. & Plastino, E. M. 2015. Effects of light quality on reproduction, growth and pigment content of Gracilaria birdiae (Rhodophyta: Gracilariales). Sci. Mar. 79:15-24. https://doi.org/10.3989/scimar.04049.12A
- Belkov, V. I., Garnik, E. Y. & Konstantinov, Y. M. 2019. Mechanism of plant adaptation to changing illumination by rearrangements of their photosynthetic apparatus. In Kochetov, A. & Salina, E. (Eds.) Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology (PlantGen2019): Proceedings of the Fifth International Scientific Conference. Novosibirsk State University Press, Novosibirsk, pp. 101-103.
- Bhagooli, R., Mattan-Moorgawa, S., Kaullysing, D., Louis, Y. D., Gopeechund, A., Ramah, S., Soondur, M., Pilly, S. S., Beesoo, R., Wijayanti, D. P., Bachok, Z. B., Monras, V. C., Casareto, B. E., Suzuki, Y. & Baker, A. C. 2021. Chlorophyll fluorescence: a tool to assess photosynthetic performance and stress photophysiology in symbiotic marine invertebrates and seaplants. Mar. Pollut. Bull. 165:112059.
- Borlongan, I. A., Suzuki, S., Nishihara, G. N., Kozono, J. & Terada, R. 2020. Effects of light quality and temperature on the photosynthesis and pigment content of a subtidal edible red alga Meristotheca papulosa (Solieriaceae, Gigartinales) from Japan. J. Appl. Phycol. 32:1329-1340. https://doi.org/10.1007/s10811-020-02045-z
- Butler, W. L. 1962. Effects of red and far-red light on the fluorescence yield of chlorophyll in vivo. Biochim. Biophys. Acta 64:309-317. https://doi.org/10.1016/0006-3002(62)90739-4
- Cao, X., Wang, H., Zang, X., Liu, Z., Xu, D., Jin, Y., Zhang, F. & Wang, Z. 2021. Changes in the photosynthetic pigment contents and transcription levels of phycoerythrin-related genes in three Gracilariopsis lemaneiformis strains under different light intensities. J. Ocean Univ. 20:661-668. https://doi.org/10.1007/s11802-021-4616-4
- Coe, R. A. & Lin, H. 2018. Light-response curves in land plants. In Covshoff, S. (Ed.) Methods in Molecular Biology. Vol. 1770. Humana Press, New York, pp. 83-94.
- Dietzel, L., Brautigam, K. & Pfannschmidt, T. 2008. Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry: functional relationships between short-term and long-term light quality acclimation in plants. FEBS J. 275:1080-1088. https://doi.org/10.1111/j.1742-4658.2008.06264.x
- Duppeti, H., Chakraborty, S., Das, B. S., Mallick, N. & Kotamreddy, J. N. R. 2017. Rapid assessment of algal biomass and pigment contents using diffuse reflectance spectroscopy and chemometrics. Algal Res. 27:274-285. https://doi.org/10.1016/j.algal.2017.09.016
- Gantt, E. 1981. Phycobilisomes. Annu. Rev. Plant Physiol. 32:327-347. https://doi.org/10.1146/annurev.pp.32.060181.001551
- Godinez-Ortega, J. L., Snoeijs, P., Robledo, D., Freile-Pelegrin, Y. & Pedersen, M. 2008. Growth and pigment composition in the red alga Halymenia floresii cultured under different light qualities. J. Appl. Phycol. 20:253-260. https://doi.org/10.1007/s10811-007-9241-0
- Goedheer, J. C. 1969. Energy transfer from carotenoids to chlorophyll in blue-green, red and green algae and greening bean leaves. Biochim. Biophys. Acta 172:252-265. https://doi.org/10.1016/0005-2728(69)90068-1
- Gong, J., Liu, Z. & Zou, D. 2020. Growth and photosynthetic characteristics of Gracilaria lemaneiformis (Rhodophyta) and Ulva lactuca (Chlorophyta) cultured under fluorescent light and different LED light. J. Appl. Phycol. 32:3265-3272. https://doi.org/10.1007/s10811-020-02151-y
- Grossman, A. R., Bhaya, D., Apt, K. E. & Kehoe, D. M. 1995. Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu. Rev. Genet. 29:231-288. https://doi.org/10.1146/annurev.ge.29.120195.001311
- Hintz, N. H. 2021. Highlighting Theodor W. Engelmann's "Farbe und Assimilation" [Color and Assimilation]. Limnol. Oceanogr. Bull. 30:121-126. https://doi.org/10.1002/lob.10470
- Johnson, M. P. 2016. Photosynthesis. Essays Biochem. 60:255-273. https://doi.org/10.1042/EBC20160016
- Kim, J. K., Mao, Y., Kraemer, G. & Yarish, C. 2015. Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting. Aquaculture 436:52-57. https://doi.org/10.1016/j.aquaculture.2014.10.037
- Kirk, J. T. O. 1994. Light and photosynthesis in aquatic ecosystems. 3rd ed. Cambridge University Press, Cambridge, 649 pp.
- Korbee, N., Figueroa, F. L. & Aguilera, J. 2005. Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J. Photochem. Photobiol. B Biol. 80:71-78. https://doi.org/10.1016/j.jphotobiol.2005.03.002
- Kursar, T. A. & Alberte, R. S. 1983. Photosynthetic unit organization in a red alga: relationships between light-harvesting pigments and reaction centers. Plant Physiol. 72:409-414. https://doi.org/10.1104/pp.72.2.409
- Lafarga-De la Cruz, F., Valenzuela-Espinoza, E., MillanNunez, R., Trees, C. C., Santamaria-del-Angel, E. & Nunez-Cebrero, F. 2006. Nutrient uptake, chlorophyll a and carbon fixation by Rhodomonas sp. (Cryptophyceae) cultured at different irradiance and nutrient concentrations. Aquac. Eng. 35:51-60. https://doi.org/10.1016/j.aquaeng.2005.08.004
- Latsos, C., van Houcke, J., Blommaert, L., Verbeeke, G. P., Kromkamp, J. & Timmermans, K. R. 2021. Effect of light quality and quantity on productivity and phycoerythrin concentration in the cryptophyte Rhodomonas sp. J. Appl. Phycol. 33:729-741. https://doi.org/10.1007/s10811-020-02338-3
- Litjens, R. A. J., Quickenden, T. I. & Freeman, C. G. 1999. Visible and near-ultraviolet absorption spectrum of liquid water. Appl. Optics 38:1216-1223. https://doi.org/10.1364/AO.38.001216
- Lopez-Figueroa, F. & Niell, F. X. 1990. Effects of light quality on chlorophyll and biliprotein accumulation in seaweeds. Mar. Biol. 104:321-327. https://doi.org/10.1007/BF01313274
- MacColl, R. 1998. Cyanobacterial phycobilisomes. J. Struct. Biol. 124:311-334. https://doi.org/10.1006/jsbi.1998.4062
- Maxwell, K. & Johnson, G. N. 2000. Chlorophyll fluorescence: a practical guide. J. Exp. Bot. 51:659-668. https://doi.org/10.1093/jexbot/51.345.659
- Morel, A., Gentili, B., Claustre, H., Babin, M., Bricaud, A., Ras, J. & Tieche, F. 2007. Optical properties of the "clearest" natural waters. Limnol. Oceanogr. 52:217-229. https://doi.org/10.4319/lo.2007.52.1.0217
- Muller, P., Li, X. P. & Niyogi, K. K. 2001. Non-photochemical quenching: a response to excess light energy. Plant Physiol. 125:1558-1566. https://doi.org/10.1104/pp.125.4.1558
- Nakajima, Y. & Ueda, R. 1999. Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigment. J. Appl. Phycol. 11:195-201. https://doi.org/10.1023/A:1008015224029
- Platt, T., Gallegos, C. L. & Harrison, W. G. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38:687-701.
- Provasoli, L. 1968. Media and prospects for the cultivation of marine algae. In Watanabe, A. & Hattori, A. (Eds.) Cultures and Collections of Algae. Proceedings of the USJapan Conference. Japanese Society of Plant Physiology Press, Hakone, pp. 63-75.
- Ralph, P. J. & Gademann, R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat. Bot. 82:222-237. https://doi.org/10.1016/j.aquabot.2005.02.006
- Reiskind, J. B., Beer, S. & Bowes, G. 1989. Photosynthesis, photorespiration and ecophysiological interactions in marine macroalgae. Aquat. Bot. 34:131-152. https://doi.org/10.1016/0304-3770(89)90053-3
- Schreiber, U., Gademann, R., Ralph, P. J. & Larkum, A. W. D. 1997. Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. Plant Cell Physiol. 38:945-951. https://doi.org/10.1093/oxfordjournals.pcp.a029256
- Stomp, M., Huisman, J., De Jongh, F., Veraart, A. J., Gerla, D., Rijkeboer, M., Ibelings, B. W., Wollenzien, U. I. A. & Stal, L. J. 2004. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432:104-107. https://doi.org/10.1038/nature03044
- Sutherland, J. E., Lindstrom, S. C., Nelson, W. A., Brodie, J., Lynch, M. D. J., Hwang, M. S., Choi, H. -G., Miyata, M., Kikuchi, N., Oliveira, M. C., Farr, T., Neefus, C., MolsMortensen, A., Milstein, D. & Muller, K. M. 2011. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J. Phycol. 47:1131-1151. https://doi.org/10.1111/j.1529-8817.2011.01052.x
- Talarico, L. & Maranzana, G. 2000. Light and adaptive responses in red macroalgae: an overview. J. Photochem. Photobiol. B Biol. 56:1-11. https://doi.org/10.1016/S1011-1344(00)00046-4
- Townsend, A. J., Ware, M. A. & Ruban, A. V. 2018. Dynamic interplay between photodamage and photoprotection in photosystem II. Plant Cell Environ. 41:1098-1112. https://doi.org/10.1111/pce.13107
- Van Kooten, O. & Snel, J. F. H. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25:147-150. https://doi.org/10.1007/BF00033156
- Wang, X., Zhang, P., Wu, Y. & Zhang, L. 2020. Effect of light quality on growth, ultrastructure, pigments, and membrane lipids of Pyropia haitanensis. J. Appl. Phycol. 32:4189-4197. https://doi.org/10.1007/s10811-020-02264-4
- Watanabe, M. & Ikeuchi, M. 2013. Phycobilisome: architec-ture of a light-harvesting supercomplex. Photosynth. Res. 116:265-276. https://doi.org/10.1007/s11120-013-9905-3
- White, A. J. & Critchley, C. 1999. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth. Res. 59:63-72. https://doi.org/10.1023/A:1006188004189
- Wu, H. 2016. Effect of different light qualities on growth, pigment content, chlorophyll fluorescence, and antioxidant enzyme activity in the red alga Pyropia haitanensis (Bangiales, Rhodophyta). BioMed Res. Int. 2016:7383918.
- Ye, Z. P., Yu, Q. & Kang, H. J. 2012. Evaluation of photosynthetic electron flow using simultaneous measurements of gas exchange and chlorophyll fluorescence under photorespiratory conditions. Photosynthetica 50:472-476. https://doi.org/10.1007/s11099-012-0051-5
- Yong, Y. S., Yong, W. T. L. & Anton, A. 2013. Analysis of formulae for determination of seaweed growth rate. J. Appl. Phycol. 25:1831-1834. https://doi.org/10.1007/s10811-013-0022-7