DOI QR코드

DOI QR Code

Application of Seaweed Cultivation to the Bioremediation of Nutrient-Rich Effluent

  • Chung, Ik-Kyo (Department of Marine Science, Pusan National University) ;
  • Kang, Yun-Hee (Department of Marine Science, Pusan National University) ;
  • Charles Yarish (Department of Ecology and Evolutionary Biology, University of Connecticut) ;
  • George P. Kraemer (Department of Environmental Sciences, Purchase College, State University of New York) ;
  • Lee, Jin-Ae (School of Enviromental Science and Engineering, Inje University)
  • Published : 2002.09.30

Abstract

A seaweed biofilter/production system of being developed to reduce the environmental impact of marine fish farm effluent in coastal ecosystems as a part of an integrated aquaculture system. Several known seaweed taxa and their cultivars have been considered as candidate biofilter organisms based on their species-specific physiological properties such as nutrient uptake kinetics and their economic value. Porphyra is an excellent cadidate and shows efficient nutrient extraction properties. Rates of ammonium uptake were maintained at around 3 ${\mu}moles{\cdot}g{\cdot}dw^{-1}{\cdot}min^{-1}$ at 150 ${\mu}M$ inorganic nitrogen at $10^{\circ}C$. Ulva is another possible biofilter candidate with an uptake rate of 1.9 ${\mu}moles{\cdot}g{\cdot}dw^{-1}{\cdot}min^{-1}$ under same conditions. A simple uptake/growth and harvest model was applied to estimate the efficiency of the biofilter/production system. The model was deterministic and used a compartment model structure based on difference equations. The efficiency of Porpyra filter was estimated over 17% of ${NH_4}^+$ removal from the contimuous supply of 100 ${\mu}mole{\cdot}l^{-1}\;{NH_4}^+\;at\;100l{\cdot}sec^{-1}$ flow rate.

Keywords

References

  1. Anonymous. 1994. Studies on the development of polyculture system in thee coastal waters of Korea - Final report. National Fisheries Research and Development Institute. 570p. (in Korean with English summary)
  2. Anonymous. 2000. FAO. The state of world fisheries and aquaculture 2000. (http://www.fao.org/docrep/003/x8002e/x8002e00.htm)
  3. Anonymous. 2002. Korean Harmful Algal Blooms, National Fisheries Research and Development Institute. (http://www.nfrda.re.kr/korhab/index.htm)
  4. Bhang Y.J. and Kim J.H. 2001. The role of Ulva species as a competitor on algal communities in green tide area. Proc. 15th Ann. Meeting of Korean Soc. Phycol. June 1-2, 2001. Kangnung Univ. Korea.
  5. Black K.D. (ed.) 2001. Environmental Impacts of aquaculture. Sheffield Academic Press, Sheffield. 214p.
  6. Brzeski V. and Newkirk G. 1997. Integrated coastal food production systems - a review of current literature. Ocean Coastal Management 34: 55-71. https://doi.org/10.1016/S0964-5691(97)82690-7
  7. Buschmann A.H., Mora O.A., Gomez P., Bottger M., Buitano S., Retamales G., Vergara P.A. and Gutierrez A. 1994. Gracilatia chilensis outdoor tank cultivation in Chile: use of land-based salmon culture effluents. Aquacult. Eng. 13: 283-300. https://doi.org/10.1016/0144-8609(94)90016-7
  8. Chopin T. and Yarish C. 1998. Nutrients or Not Nutrients? That is the question in seaweed aquaculture ... and the answer depends on the type and purpose of the aquaculture system. World Aquaculture 29: 31-33, 60-61. https://doi.org/10.1111/j.1749-7345.1998.tb00297.x
  9. Chopin T. and Yarish C. 1999. Aquaculture does not only mean finfish monoculture ... seaweeds must be a significant component for an integrated ecosystem approach. Bull. Aquacul. Assoc. Canada 99-1: 35-37.
  10. Chopin T., Buschmann A.H., Halling C., Troell M. Kautsky N., Neori A., Kraemer G.P., Zertuche-Gonzalez J. A., Yarish C. and Neefus C. 2001. Integrated seaweeds into marine aquaculture systems: a key toward sustainability. J. Phycol. 37: 975-986. https://doi.org/10.1046/j.1529-8817.2001.01137.x
  11. Chopin T., Yarish C., Wilkes R., Belyea E., Lu S. and Mathieson A. 1999. Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. J. Appl. Phycol. 11: 463-472. https://doi.org/10.1023/A:1008114112852
  12. Chung I.K. 2002. The development of environmently sound integrated polyculture system. Min. Sci. Tech. Project #M6-0203-00-0041-02-A01-00-021-00.
  13. Cohen I. and Neori M. 1991. Ulva lactuca biofilters for marine fishponds effluents. 1. Ammonium uptake kinetics and nitrogen content. Bot. Mar. 34: 475-482. https://doi.org/10.1515/botm.1991.34.6.475
  14. Cuomo V., Merrill J., Palomba I. and Perretti A. 1993. Systematic collection of Ulva and mariculture of Porphyra: biotechnology against eutrophication in the Venice lagoon. Intern. J. Environ. Studies 43: 141-149. https://doi.org/10.1080/00207239308710821
  15. Dvir O., van Rijn J. and Neori A. 1999. Nitrogen transformations and factors leading to nitrite accumulation in a hypertrophic marine fish culture system. Mar. Ecol. Prog. Ser. 181: 97-106. https://doi.org/10.3354/meps181097
  16. Fernandes T.F., Eleftheriou A., Ackefors H., Eleftheriou M., Ervik A., Sanchez-Mata A., Scanlon, T., White P., Cochrane S., Pearson T.H. and Read P.A. 2001. The scientific principles underlying the monitoring of the environmental impacts of aquaculture. J. Appl. Ichthyol. 17: 181-193. https://doi.org/10.1046/j.1439-0426.2001.00315.x
  17. Fernandes T.F.,Miller K.L. and Read P.A. 2000. Monitoring and regulation of marine aquaculture in Europe. J. Appl. Ichthyol. 16: 138-143. https://doi.org/10.1046/j.1439-0426.2000.00267.x
  18. Hanisak M.D. 1983. The nitrogen relationships of marine macroalgae. In: Carpenter E.J. and Capone D.G. (eds), Nitrogen in the marine environment. Academic Press, London. pp. 699-730.
  19. Harrison P.J. and Hurd C.L. 2001. Nutrient physiology of seaweeds: Application of concepts to aquaculture. Cah. Bioi. Mar. 42: 71-82.
  20. Jimenez Del Rio M., Ramazanov Z. and Garcia-Reina G. 1994. Optimization of yield and biofiltering efficiencies of Ulva rigida C.Ag. cultivated with Sparus aurata L. waste waters. Sci. Mar. 58: 329-335.
  21. Jones A.B., Dennison W.C and Preston N.P. 2001. Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture 193: 155-178. https://doi.org/10.1016/S0044-8486(00)00486-5
  22. Jones A.B., Preston N.P. and Dennison W.C. 2002. The efficiency and condition of oysters and macroalgae used as biological filters of shrimp pond effluent. Aquacult. Res. 33: 1-19. https://doi.org/10.1046/j.1355-557X.2001.00637.x
  23. Jones A.B., Stewart G.R., and Dennison W.C. 1996. Macroalgal responses to nitrogen source and availability: amino acid metabolic profiling as a bioindicator using Gracilaria edulis (Rhodophyta). J. Phycol. 32: 757-766. https://doi.org/10.1111/j.0022-3646.1996.00757.x
  24. Krom M.D., Ellner S., van Rijn J. and Neori A. 1995. Nitrogen and phosphorus cycling and transformations in a prototype 'non-polluting' integrated mariculture system, Eilat, Israel. Mar. Ecol. Prog. Ser. 118: 25-36. https://doi.org/10.3354/meps118025
  25. Luning, K. 2002. SEAPURA: Seaweeds purifying effluents from fish farms: An EU project coordinated by the Wadden Sea Station SyIt. Wadden Sea Newsletter 2001-2. pp. 20-21. (http://seapura.com/seapura.html)
  26. McVey J.P., Stickney R.R., Yarish C. and Chopin T. 2002. Aquatic polyculture and balanced ecosystem management: New paradigms for seafood production. In: Stickney, R R and McVey, J. P. (eds), Responsible marine aquaculture. CABI Publishing, New York. pp. 91-104.
  27. Naylor R.I., Goldberg R.J., Primavera J.H., Kautsky N., Beveridge M.C.M., Clay K., Folke C., Lubchenco J., Mooney H. and Troell M. 2001. Effect of aquaculture on world fish supplies. Nature 405: 1017-1024. https://doi.org/10.1038/35016500
  28. Nelson S.G., Glenn E.P., Conn J., Moore D., Walsh T. and Akutagawa M. 2001. Cultivation of Gracilaria parvispora (Rhodophyta) in shrimp-farm effluent ditches and floating cages in Hawaii: a two-phase polyculture system. Aquaculture 193: 239-248. https://doi.org/10.1016/S0044-8486(00)00491-9
  29. Neori A., Krom M.D., Ellner S.P., Boyd C.E., Popper D., Rabinovitch R., Davison P.J., Dvir O., Zuber D., Ucko M., Angel D. and Gordin H. 1996. Seaweed biofilter as regulators of water quality in integrated fish-seaweed culture units. Aquaculture 141: 183-199. https://doi.org/10.1016/0044-8486(95)01223-0
  30. Neori A., Ragg N.L.C. and Shpigel M. 1998. The integrated cuIture of seaweed, abalone, fish and clams in modular intensive land-based systems: II. Performance and nitrogen partitioning within an abalone (Haliotis tuberculata) and macroalgae culture system. AquacuIt. Eng. 17: 215-239. https://doi.org/10.1016/S0144-8609(98)00017-X
  31. Neori A., Shpigel M. and Ben-Ezra D. 2000. A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 186: 279-291. https://doi.org/10.1016/S0044-8486(99)00378-6
  32. Newkirk G. 1996. Sustainable coastal production systems: a model for integrating aquaculture and fisheries under community management. Ocean Coastal Management 32: 69-83. https://doi.org/10.1016/S0964-5691(96)00066-X
  33. Paez-Osuna F., Guerrero-Galvan S.R. and Ruiz-Fernandez A.C. 1999. Discharge of nutrients from shrimp farming to coastal waters of the Gulf of California. Mar. Pollut. Bull. 38: 585-592. https://doi.org/10.1016/S0025-326X(98)00116-7
  34. Parsons T.R., Maita Y. and Lalli C.M. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford.
  35. Pedersen M.F. and Borum J. 1997. Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar. Ecol. Prog. Ser. 161: 155-163. https://doi.org/10.3354/meps161155
  36. Qian P.-Y., Wu C.Y., Wu M. and Xie Y.K. 1996. Integrated cultivation of the red alga Kappaphycus alvarezii and the pearl oyster Pinctada martensi. Aquaculture 147: 21-35. https://doi.org/10.1016/S0044-8486(96)01393-2
  37. Rawson Jr. M.V., Chen C., Ji R., Zhu M., Wang D., Wang L., Yarish C., Sullivan J.B., Chopin T. and Carmona R. 2002. Understanding the interaction of extractive and fed aquaculture using ecosystem modeling. In: Stickney, R. R. and McVey, J. P. (eds), Responsible marine aquaculture. CABI Publishing, New York. pp. 91-104.
  38. Schramm W. 1999. Factors influencing seaweed responses to eutrophication: some results from EU-project EUMAC. J. Appl. Phycol. 11: 69-78. https://doi.org/10.1023/A:1008076026792
  39. Smith V.H., Tilman G.D. and Nekola J.C. 1999. Eutrophication: impacts of excess nutrient input on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100: 179-196. https://doi.org/10.1016/S0269-7491(99)00091-3
  40. Stead S.M. and Laird L. (eds), 2002. Handbook of salmon farming. Springer, London, pp. 163-166.
  41. Stickney R.R. 2000. Polyculture. In: Stickney, R. R. (ed.), Encyclopedia of aquaculture. John Wiley & Sons, Inc., New York, pp. 658-660.
  42. Subandar A., Petrell R.J. and Harrison P.J. 1993. Laminaria culture for reduction of dissolved inorganic nitrogen in salmon farm effluent. J. Appl. Phycol. 5: 455-463. https://doi.org/10.1007/BF02182738
  43. Taylor R.B., Peek J.T.A. and Rees T.A.V. 1998. Scaling of ammonium uptake by seaweeds to surface area:volume ratio:geographical variation and the role of uptake by passive diffusion. Mar. Ecol. Prog. Ser. 169: 143-148. https://doi.org/10.3354/meps169143
  44. Troell M., Halling C., Nilsson A., Buschmann A.H., Kautsky N. and Kautsky S. 1997. Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture 156: 45-61. https://doi.org/10.1016/S0044-8486(97)00080-X
  45. Troell M., Kautsky N. and Folke C. 1999. Applicability of integrated coastal aquaculture system. Ocean Coastal Management 42: 63-69. https://doi.org/10.1016/S0964-5691(98)00082-9
  46. Vandermuelen H. and Gordin H. 1990. Ammonium uptake using Ulva (Chlorophyta) in intensive fishpond systems: Mass culture and treatment of effluent. J. Appl. Biol. 2: 363-374.
  47. Wallentiuns I. 1984. Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Mar. Biol. 80: 215-225 https://doi.org/10.1007/BF02180189
  48. Wu R.S.S. 1995. The environmental impacts of marine fish culture: towards a sustainable future. Mar. Pollut. Bull. 31: 159-166. https://doi.org/10.1016/0025-326X(95)00100-2

Cited by

  1. A novel marine algal toxicity bioassay based on sporulation inhibition in the green macroalga Ulva pertusa (Chlorophyta) vol.75, pp.3, 2005, https://doi.org/10.1016/j.aquatox.2005.08.003
  2. An Ocean Acidification Acclimatised Green Tide Alga Is Robust to Changes of Seawater Carbon Chemistry but Vulnerable to Light Stress vol.11, pp.12, 2016, https://doi.org/10.1371/journal.pone.0169040
  3. Evaluation of the bioremediatory potential of several species of the red alga Porphyra using short-term measurements of nitrogen uptake as a rapid bioassay vol.16, pp.6, 2004, https://doi.org/10.1007/s10811-004-5511-2
  4. Nitrogen biofiltration capacities and photosynthetic activity of Pyropia yezoensis Ueda (Bangiales, Rhodophyta): groundwork to validate its potential in integrated multi-trophic aquaculture (IMTA) vol.26, pp.2, 2014, https://doi.org/10.1007/s10811-013-0214-1
  5. Removal of eutrophication factors and heavy metal from a closed cultivation system using the macroalgae, Gracilaria sp. (Rhodophyta) vol.28, pp.6, 2010, https://doi.org/10.1007/s00343-010-9902-8
  6. Bioremediation efficiencies of Gracilaria verrucosa cultivated in an enclosed sea area of Hangzhou Bay, China vol.23, pp.2, 2011, https://doi.org/10.1007/s10811-010-9584-9
  7. The effects of temperature and nutrient concentrations on nitrate and phosphate uptake in different species of Porphyra from Long Island Sound (USA) vol.312, pp.2, 2004, https://doi.org/10.1016/j.jembe.2004.05.021
  8. Experiments on an integrated aquaculture system (seaweeds and marine fish) on the Red Sea coast of Saudi Arabia: efficiency comparison of two local seaweed species for nutrient biofiltration and production vol.4, pp.1, 2012, https://doi.org/10.1111/j.1753-5131.2012.01057.x
  9. Assessment of Nutrients in Seaweed Tank from Land Based Integrated Multitrophic Aquaculture Module vol.05, pp.08, 2017, https://doi.org/10.4236/gep.2017.58012
  10. Les macroalgues du Saint-Laurent : une composante essentielle d’un écosystème marin unique et une ressource naturelle précieuse dans un contexte de changement global vol.140, pp.2, 2016, https://doi.org/10.7202/1036505ar
  11. Biogas production from algal biomass: A review vol.43, 2015, https://doi.org/10.1016/j.rser.2014.11.052
  12. The concentrating method of benthic diatom affects the growth of juvenile sea cucumber (Apostichopus japonicus ) and water quality vol.48, pp.8, 2017, https://doi.org/10.1111/are.13275
  13. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture vol.231, pp.1-4, 2004, https://doi.org/10.1016/j.aquaculture.2003.11.015
  14. Study on the Suitability Selection for Construction of Seaweed Bed in Sewage Water Ocean Outfall Area vol.27, pp.4, 2015, https://doi.org/10.13000/JFMSE.2015.27.4.1021
  15. Environmental effects of a marine fish farm of gilthead seabream (Sparus aurata) in the NW Mediterranean Sea on water column and sediment vol.46, pp.1, 2015, https://doi.org/10.1111/are.12159
  16. Exploring Northeast American and Asian species of Porphyra for use in an integrated finfish–algal aquaculture system vol.252, pp.1, 2006, https://doi.org/10.1016/j.aquaculture.2005.11.049
  17. The perception of aquaculture on the Swedish West Coast 2017, https://doi.org/10.1007/s13280-017-0945-3
  18. Aquaculture Industry in China: Current State, Challenges, and Outlook vol.19, pp.3, 2011, https://doi.org/10.1080/10641262.2011.573597
  19. A comparative study of the nutrient uptake and growth capacities of seaweeds Caulerpa lentillifera and Gracilaria lichenoides vol.28, pp.5, 2016, https://doi.org/10.1007/s10811-016-0858-8
  20. Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters vol.254, pp.1-4, 2006, https://doi.org/10.1016/j.aquaculture.2005.08.029
  21. Community structure and species diversity of intertidal benthic macroalgae in Fengming Island, Dalian vol.36, pp.2, 2016, https://doi.org/10.1016/j.chnaes.2016.01.004
  22. Marine cage culture and the environment: effects on water quality and primary production vol.6, pp.2, 2015, https://doi.org/10.3354/aei00122
  23. A preliminary study of the bioremediation potential of Codium fragile applied to seaweed integrated multi-trophic aquaculture (IMTA) during the summer vol.20, pp.2, 2008, https://doi.org/10.1007/s10811-007-9204-5
  24. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services vol.32, pp.1, 2017, https://doi.org/10.4490/algae.2017.32.3.3
  25. The impact of elevated atmospheric CO2 on cadmium toxicity in Pyropia haitanensis (Rhodophyta) vol.25, pp.33, 2018, https://doi.org/10.1007/s11356-018-3289-z
  26. Comparative study on the physiological differences between three Chaetomorpha species from Japan in preparation for cultivation vol.30, pp.2, 2018, https://doi.org/10.1007/s10811-017-1306-0
  27. Bioremediation efficiency of Palmaria palmata and Ulva lactuca for use in a fully recirculated cold-seawater naturalistic exhibit: effect of high NO3 and PO4 concentrations and temperature on growth and nutrient uptake vol.30, pp.2, 2018, https://doi.org/10.1007/s10811-017-1333-x
  28. Development of mariculture and its impacts in Chinese coastal waters vol.14, pp.1, 2004, https://doi.org/10.1007/s11160-004-3539-7