DOI QR코드

DOI QR Code

Ecological Study on the Toxic Microcystis in the Lower Nakdong River

洛東江 하류 수계의 毒性 Microcystis 生態 연구

  • Choi, Ae-Ran (Environmental Biotechnology Laboratory, Korea Research Institute of Biosicience and Biotechnology) ;
  • Oh, Hee-Mock (Environmental Biotechnology Laboratory, Korea Research Institute of Biosicience and Biotechnology) ;
  • Lee, Jin-Ae (School of Environmental Science and Engineering, Inje University)
  • 최애란 (한국생명공학연구원 환경생명공학연구실) ;
  • 오희목 (한국생명공학연구원 환경생명공학연구실) ;
  • 이진애 (인제대학교 환경시스템학부)
  • Published : 2002.09.30

Abstract

The standing crop of genus Microcystis, microcystin concentrations and environmental factors were monitored at stations of the lower reaches of the Nakdong River in 1998 and 1999 during the periods of its occurrence. The Microcystis were observed from May to Octorber, and the cell density was highest at Station Seonam up to 250,000 cells${\cdot}ml^{-1}$ forming scum over the water surface. There were signigicant relationships between the standing crop of Microcystis and nitrate nitrogen, total phosphorus concentrations and Ph. Presumably these parameters were important in the succession to Microcystis dominated phytoplankton community in the summer period in the river. However, Ammonium nitrogen, phosphate phosphorus concentrations and N/P ratio were not critical factors. The Microcystis bloom was notable above $25^{\circ}C$ of surface water temperature. Microcystins were detected from May to November in the algal materials from the river. The 84.2% of algal materials with Microcystis exhibited the microcystin with the maximum of 1711.8 ${\mu}g{\cdot}g^{-1}$ dw. The microcystin concentrations in the algal materials were significantly related to the stading crop of Microcystis, which was the primary determinant factor in the toxin levle of algal materials. The concentrations were also significantly related to pH of the water column in the positive pattern.

Keywords

References

  1. 김명운, 김민호, 조장천, 김상종. 1995. Cyanobacteria의 증식에 따른 대청호 생태계 내의 생물군집 변화. 한국육수학회지 28: 1-9.
  2. 김범철, 김은경, 표동진, 신윤근. 1994. 전국 주요호수의 남조류 bloom과 algal toxin. 한국육수학회 춘계학술발표대회 요지집. pp. 202.
  3. 박정원, 권덕기. 1998. 합천호에서 남조류 수화현상(녹조현상)의 초기 발생에 대한 연구. I. 수계에서 Microcystis aeruginosa Kutz.의 현존량 증가와 $K^{+}$, $ Na^{+}$,$Mg^{2+}$$ Ca^{2+}$ 농도와의 상관관계. 한국육수학회지 31: 97-102.
  4. 박혜경, 정원화, 임연택, 김종택, 류재근. 1999. 팔당호에서 남조류 및 마이크로시스틴의 경시적 변화. 한국물환경학회 춘계학술발표회 논문초록집. pp. 90-93.
  5. 신재기. 1998. 낙동강 부영양화에 따른 담수조류의 생태학적 연구. 인제대학교 박사학위논문. 202 pp.
  6. 오희목, 김도한. 1995. 대청호 남조류 수화발생에 대한 단기적 예측. 한국육수학회지 28: 127-135.
  7. 이진애, 최애란, 김우현. 1999. 낙동강수계의 독성 남조류 발생 현황. 인제대학교 환경연구노트 8: 7-25.
  8. 정준. 1993. 한국담수조류도감. 도시출판 아카데미서적. 469 pp.
  9. 정영호. 1968. 한국동식물도감. 제9권 식물편(담수조류). 문교부. 573 pp.
  10. 조경제, 신재기. 1998. 낙동강 하류에서 동.하계 무기 N.P 영양염류와 식물플랑크톤의 동태. 한국육수학회지 31: 67-75.
  11. APHA, AWWA, WEF. 1992. Standard methods for the examination of water and wastewater. 18th ed. American Public Health Association, Washington, DC.
  12. Bowling L. 1994. Occurrence and possible causes of a severe cyanobacterial bloom in Lake Cargelligo, New South Wales. Aust. J. Mar. Freshwater Res. 45: 737-745. https://doi.org/10.1071/MF9940737
  13. Carmichael W.W. 1993. Disease related to freshwater blue-green algae toxins and control measures. In: Falconer I.R (ed), Algal toxins in seafood and drinking water. Academic Press, Cambridge. pp. 187-209.
  14. Cho K.J., Chung I.K and Lee J.A. 1993. Seasonal dynamics of phytoplankton community in the Naktong River estuary, Korea. Korean J. Phycol. 8: 15-28.
  15. Christoffersen K. 1996. Ecological implications of cyanobacterial toxins in the food webs. Phycologia 35(Suppl.): 42-50. https://doi.org/10.2216/i0031-8884-35-6S-42.1
  16. Codd G.A. 2000. Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecol. Engineer. 16: 51-60.
  17. Ganf G.G. and Oliver R.L. 1982. Vertical separation of light and available nutrients as a factors causing replacement of green algae by blue-green algae in the plankton of a stratified lake. J. Ecol. 70: 829-844. https://doi.org/10.2307/2260107
  18. Harada K.-I. 1996. Chemistry and detection of microcystins. In: Watanabe M.P., Harada K-I., Carmichael W.W. and Fujiki H. (eds), Toxic Microcystis. CRC Press, Tokyo. pp. 103-148.
  19. Harada K.-I., Ogawa K., Matsuura K, Nagai H., Murata H., Suzuki M., Itezono Y., Nakayama N., Shirai M. and Nakano M. 1991. Isolation of two toxic heptapeptide microcystins from an axenic strain of Microcystis aeruginosa, K-139. Toxicon 29: 479-489. https://doi.org/10.1016/0041-0101(91)90022-J
  20. Harada K.-I., Tsuji K., Watanabe M.F. and Kondo F. 1996. Stability of microcystin from cyanobacteria - III. Effect of pH and temperature. Phycologia 35: 83-88.
  21. Hecky R.E. and Kilham P. 1988. Nutrients limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33: 796-822. https://doi.org/10.4319/lo.1988.33.4_part_2.0796
  22. Hotzel G. and Croome R. 1994. Long-term phytoplankton monitoring of the Darling River at Burtundy, New South Wales: incidence and significance of cyanobacterial blooms. Aust. J. Mar. Freshwater Res. 45: 747-759. https://doi.org/10.1071/MF9940747
  23. Jones G.J. and Orr P.T. 1994. Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Wat. Res. 28: 871-876. https://doi.org/10.1016/0043-1354(94)90093-0
  24. Kaya K. and Sano T. 1999. Total microcystin determination using erythro-2-methyl-3-(methoxy-$d_3$)-4-phenylbutyric acid (MMPB-$d_3$) as the internal standard. Anal. Chim. Acta 386: 107-112. https://doi.org/10.1016/S0003-2670(99)00012-4
  25. Kaya K. and Watanabe M.M. 1990. Microcystin composition of an axenic clonal strain of Microcystis viridis and Microcystis viridis-containing waterblooms in Japanese freshwaters. J. Appl. Phycol. 2: 173-178. https://doi.org/10.1007/BF00023379
  26. Klemer A.R., Cullen J.J., Mageau M.T., Hanson K.M. and Sundell R.A. 1996. Cyanobacterial buoyancy regulation: The paradoxical roles of carbon. J. phycol. 32: 47-53. https://doi.org/10.1111/j.0022-3646.1996.00047.x
  27. Kotak B.G., Lam A.K.Y., Prepas E.E., Kenefick S.L. and Hrudey S.E. 1995. Variability of the hepatotoxin microcystin-LR in hypereutrophic drinking water lakes. J. Phycol. 31: 248-263. https://doi.org/10.1111/j.0022-3646.1995.00248.x
  28. Lahti K., Rapala J., Fardig M., Niemela M. and Sivonen K. 1997. Persistence of cyanobacterial hepatotoxin, microcystin-LR, in particulate material and dissolved in lake water. Wat. Res. 31: 1005-1012. https://doi.org/10.1016/S0043-1354(96)00353-3
  29. Lambert T., Boland M.P., Holmes C.F. and Hrudey S.E. 1994. Quantitation of the microcystin hepatotoxins in water at environmentally relevant concentrations with the protein phosphotase bioassay. Environ. Sci. Technol. 28: 753-755. https://doi.org/10.1021/es00053a032
  30. Lee J.A., Choi A.R. and Chung I.K. 1995. Phytoplankton stoichiometry and nutrient status of the Sonaktong River. Korean J. Limnol. 10: 37-44.
  31. Lee J.A., Choi A.R. and Watanabe M. 1997. Morphological variations in geuns Microcystis (Cyanophyceae) in the Naktong River and its taxanomical implications. Algae 12: 147-157.
  32. Lee J.A., Srivastava V.C., Choi A.R., Kim W.H. and Park M.J. 1998. Composition of microcystin from cyanobacteria water blooms of the Sonaktong Reservoir, Korea. Korean J. Limnol. 31: 251-257.
  33. MacKintosh C., Beattia KA., Klumpp S., Cohen S. and Codd G.A. 1990. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 264: 187-192. https://doi.org/10.1016/0014-5793(90)80245-E
  34. Maier H.R. and Dandy G.C. 1997. Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks. Math. Comput. Simul. 43: 377-386. https://doi.org/10.1016/S0378-4754(97)00022-0
  35. Maier H.R., Dandy G.C. and Burch M.D. 1998. Use of artificial neural networks for modeling cyanobacteria Anabaena spp. in the River Murray, South Australia. Ecol. Model. 105: 257-272. https://doi.org/10.1016/S0304-3800(97)00161-0
  36. Moestrup O. 1996. Toxic blue-green algae (cyanobacteria) in 1833. Phycologia 35(Suppl.): 5. https://doi.org/10.2216/i0031-8884-35-6S-5.1
  37. Orr P.T. and Jones G.J. 1998. Relationship between microcystin production and cell division rates in nitrogen - limited Microcystis aeruginosa cultures. Limnol. Oceanogr. 43: 1604-1614. https://doi.org/10.4319/lo.1998.43.7.1604
  38. Paerl H.W. 1996. A comparison of cyanobacterial bloom dynamics in freshwater, estuarine and marine environments. Phycologia 35(Suppl.): 25-35. https://doi.org/10.2216/i0031-8884-35-6S-25.1
  39. Park H.-D., Watanabe M.F., Harada K.-I., Nagai H., Suzuki M., Watanabe M. and Hayashi H. 1993. Hepatotoxin (microcystin) and neurotoxin (anatoxin-a) contained in natural blooms and strains of cyanobacteria from Japanese freshwaters. Nat. Toxins 1: 353-360. https://doi.org/10.1002/nt.2620010606
  40. Park M.J., Hwang l.Y., Choi A.R. and Lee J.A. 1996. A study on the blue-green algal toxin of the Sonaktong Reservoir. Algae 11: 149-154.
  41. Parker D.L., Kumar H.D., Rai L.C. and Singh J.B. 1997. Potassium salts ingibit growth of the cyanobacteria Microcystis spp. in pond water and defined media: Implications for control of microcystin - producing aqautic blooms. Appl. Environ. Microbiol. 63: 2324-2329.
  42. Pelander A., Ojanpera I, Sivonen K., Himberg K., Waris M., Niinivaara K. and Vuori E. 1996. Screening for cyanobacterial toxins in bloom and strain samples by thin layer chromatography. Wat. Res. 30: 1464-1470. https://doi.org/10.1016/0043-1354(95)00266-9
  43. Pick F.R. and Lean D.R.S. 1987. The role of macronutrients (C, N, P,) in controlling cyanobacterial dominance in temperate lakes. N. Z. J. Mar. Freshwat. Res. 21: 425-434. https://doi.org/10.1080/00288330.1987.9516238
  44. Rapala J., Sivonen K., Lyra C. and Niemela S.I. 1997. Vatiation of microcystin, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl. Environ. Microbiol. 63: 2206-2212.
  45. Redfield A.C. 1958. The biological control of chemical factors in the environment. Am. Sci. 46: 205-221.
  46. Reynolds C.S. 1984. The ecology of freshwater phytoplankton. Cambridge Univ. Press, Cambridge. 384 pp.
  47. Reynolds C.S. and Walsby A.E. 1975. Water blooms. Biol. Rev. 50: 437-481. https://doi.org/10.1111/j.1469-185X.1975.tb01060.x
  48. Robarts R.D. and Zohary T. 1987. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. N.Z.J. Mar. Freshwat. Res. 21: 391-399. https://doi.org/10.1080/00288330.1987.9516235
  49. Schindler D.W., Armstrong F.A.J., Holmgren S.K. and Brunskill. 1971. Eutrophication of Lake 227, experimental lake area, Northwestern Ontario, by addition of phosphate and nitrate. J. Fish. Res. Bd. Canada 28: 1763-1782. https://doi.org/10.1139/f71-261
  50. Shapiro J. 1973. Blue-green algae: why they become dominant. Science 179: 382-384. https://doi.org/10.1126/science.179.4071.382
  51. Shapiro J. 1984. Blue-green dominance in lakes: the role and management significance of pH and $CO_2$. Int. Revue ges. Hydrobiol. 69: 765-780. https://doi.org/10.1002/iroh.19840690602
  52. Shirai M., Ohtake A., Sano T., Masumoto S., Sakamoto T., Sato A., Aida T., Harada K.-I., Shimada T., Suzuki M. and Nakano M. 1991. Toxicity and toxins of natural blooms and isolated strain of Microcystis spp. (cyanobacteria) and improved procedure for purification of cultures. Appl. Environ. Microbiol. 57: 1241-1245..
  53. Sivonen K., Skulberg O.M., Namikoshi M., Evans W.R., Carmichael W.W. and Rinerhart K.L. 1992. Two methyl ester derivatives of microcystins, cyclic heptapeptide hepatotoxins, isolated from Anabaena flos-aquae strain CYA 83/1. Toxicon 30: 1465-1471. https://doi.org/10.1016/0041-0101(92)90522-7
  54. Smith V.H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669-671. https://doi.org/10.1126/science.221.4611.669
  55. Sterner R.W. 1989. Resource competition during seasonal succession toward dominance by cyanobacteria. Ecology 70: 229-245. https://doi.org/10.2307/1938429
  56. Takamura N., Iwakuma T. and Yasuno M. 1987. Uptake of $^{13}C$ and $^{15}N$ (ammonium, nitrate and urea) by Microcystis in Lake Kasumigaura. J. Plankton Res. 9: 151-165. https://doi.org/10.1093/plankt/9.1.151
  57. Takamura Y., Nomura K., Hagiwara T., Hiramatsu A., Yagi O. and Sudo R. 1981. Chemical composition of aoko(Microcystis) in Lake Kasumigaura and Microcystis aeruginosa in pure culture. Res. Rep. Natl. Inst. Environ. Stud., Jpn. 25: 31-46.
  58. Tanaka Y., Takenaka S., Matsuo H., Kitamori S. and Takiwa H. 1993. Levels of microcystin in Japanese lakes. Toxicol. Environ. Chem. 39: 21-27. https://doi.org/10.1080/02772249109357897
  59. Thompson P. and Rhee G-Y. 1994. Phytoplankton responses to eutrophicatioin. In: Rai R.C., Gaur R. and Soeder C.J. (eds), Algae and Water Pollution. Advances in Limnology, Heft, 42. Springer-Verlag. pp. 125-166.
  60. Tsuji K, Naito S., Kondo F., Ishikawa N., Watanabe M.F., Suzuki M. and Harada K.-I. 1994a. Stability of microcysins from cyanobactera : effect of light on decomposition and isomerization. Environm. Sci. Technol. 28: 173-177. https://doi.org/10.1021/es00050a024
  61. Tsuji K., Naito S., Kondo F., Watanabe M.F., Suzuki S., Nakazawa H., Suzuki M., Shimada T. and Harada K.-I. 1994b. A clean up method for analysis of trace amounts of microcystins in lake water. Toxicon 32: 1251-1259. https://doi.org/10.1016/0041-0101(94)90354-9
  62. Tsuji K., Setsuda S., Watanabe T., Kondo F., Nakazawa H., Suzuki M. and Harada K.-I. 1996. Microcystin levels during 1992 - 1995 for Lake Sagami and Tsukui - Japan. Nat. Toxins 4: 189-194. https://doi.org/10.1002/19960404NT7
  63. Ueno Y., Nagata S., Tsutsumi T., Hasegawa A., Yoshida F., Suttajit M., Mebs D., Putsch M. and Vasconcelos V.M. 1996. Survey of microcystins in environmental water by a highly sensitive immunoassay based on monoclonal antibody. Nat. Toixins 4: 271-276.
  64. Utklen H. and Gjolme N. 1995. Iron-stimulated toxin production in Microcystis aeruginosa. Appl. Environ. Microbiol. 61: 797-800.
  65. Utkilen H., Skulberg O.M., Underdal B., Gjolme N., Skulberg R. and Kotai J. 1996. The rise and fall of a toxigenic population of Microcystis aeruginosa (Cyanophyceae/Cyanobacteria) - a decade of pbservations in Lake Akersvatnet, Norway. Phycologia 35(Suppl.): 189-197. https://doi.org/10.2216/i0031-8884-35-6S-189.1
  66. Vezie C., Brient L., Sivonen K., Bertru G., Lefeuvre J.-C. and Salkinoja-Salonen M. 1997. Occurrence of microcystin-containing cyanobacterial bloom in freshwaters of Brittany (France). Arch. Hydrobiol. 139: 401-413.
  67. Vezie C., Brient L., Sivonen K., Bertru G., Lefeuvre J.-C. and Salkinoja-Salonen M. 1998. Variation of microcystin content of cyanobacterial blooms and isolation strains in Lake Grand-Lieu (France). Microbiol. Ecol. 35: 126-135. https://doi.org/10.1007/s002489900067
  68. Visser P.M., Ketelaars H.A.M. and Mur L.R. 1995. Reduced growth of the cyanobacterium Microcystis in an artificially mixed lake and reservoir. Wat. Sci. Tech. 32: 53-54.
  69. Wallace B.B. and Hamilton D.P. 1999. The effect of variations in irradiance on buoyancy regulation in Microcystis aeruginosa. Limnol. Oceanogr. 44: 273-281. https://doi.org/10.4319/lo.1999.44.2.0273
  70. Wallace B.B. and Hamilton D.P. 2000. Simulation of water-bloom formation in the cyanobacterium Microcystis aeruginosa. J. Plankton Res. 22: 1127-1138. https://doi.org/10.1093/plankt/22.6.1127
  71. Walsh K., Jones G.J. and Dunstan R.H. 1998. Effect of high irradiance and iron on volatile odour compounds in the cyanobacterium Microcystis aeruginosa. Phytochemistry 49: 1227-1239. https://doi.org/10.1016/S0031-9422(97)00943-6
  72. Watanabe M. 1996. Isolation, cultivation and classification of bloom-forming Microcystis in Japan. In: Watanabe M.F., Harada K.-I., Carmichael W.W. and Fujiki H. (eds), Toxic Microcysits. CRC Press, Tokyo. pp. 13-34.
  73. Watanabe M.M., Kaya K. and Takamura N. 1992. Fate of the toxic cyclic heptapeptides, the microcystins, from blooms of Microcystis (cyanobacteria) in a hypertrophic lake. J. Phycol. 28: 761-767. https://doi.org/10.1111/j.0022-3646.1992.00761.x
  74. WHO. 1999. Toxic cyanobacteria in water. Chorus I. and Bartram J.(eds), E & FN Spon, London and New York. 416 pp.
  75. Zohary T., Pais-Madeira A.M., Robarts R.D. and Hambright K.D. 1995. Cyanobacteria - Phytoplankton dynamics of a hypertrophic African Lake. Wat. Sci. Tech. 32: 103-104.

Cited by

  1. Application of the extended DLVO approach to mechanistically study the algal flocculation vol.30, 2015, https://doi.org/10.1016/j.jiec.2015.05.035
  2. Phytoplankton Flora and Community Structure in the Lower Nakdong River vol.26, pp.2, 2007, https://doi.org/10.5338/KJEA.2007.26.2.159
  3. Literature Survey on the Phytoplankton Flora in the Nakdong River Estuary, Korea vol.46, pp.4, 2013, https://doi.org/10.5657/KFAS.2013.0467
  4. The Analysis of Phytoplankton Community Structure in the Middle-Lower Part of the Nakdong River vol.35, pp.6, 2013, https://doi.org/10.4491/KSEE.2013.35.6.430
  5. Characteristics of Cyanobacterial Occurrence and Concentration Distribution of Cyanotoxins in Hoeya Reservoir vol.35, pp.12, 2013, https://doi.org/10.4491/KSEE.2013.35.12.943
  6. An Initiative Study on Relationship between Algal Blooms and Asian Dust for Regulation of Algal Blooms vol.29, pp.4, 2014, https://doi.org/10.7841/ksbbj.2014.29.4.285
  7. Standing Crop Distribution of Aquatic Plants in the West Nakdong River and Riparian Wetlands in the Nakdong River. vol.47, pp.1, 2014, https://doi.org/10.11614/KSL.2014.47.1.062
  8. Harmful Cyanobacterial Material Production in the North Han River (South Korea): Genetic Potential and Temperature-Dependent Properties vol.15, pp.3, 2018, https://doi.org/10.3390/ijerph15030444
  9. Effects of Weir Construction on Phytoplankton Assemblages and Water Quality in a Large River System vol.15, pp.11, 2018, https://doi.org/10.3390/ijerph15112348