Production of Bio-energy from Marine Algae: Status and Perspectives

해양조류로부터 바이오에너지 생산 : 현황 및 전망

  • Park, Jae-Il (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Woo, Hee-Chul (Division of Applied Chemical Engineering, Pukyoug National University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
  • Received : 2008.03.05
  • Accepted : 2008.06.19
  • Published : 2008.10.31

Abstract

Bio-energy offers the opportunity to lessen fossil fuel consumption. Energy derived from solar, wind, hydroelectric, geothermal, and biomass sources are considered renewable. Because most forms of bio-energy are derive deither directly or indirectly from the sun, there is an abundant supply of renewable energy available, unlike fossil fuels. The use of bio-energy also provides environmental, economic and political benefits. Bio-energy can be produced from a marine source such as biomass provides a $CO_2$ neutral, non-polluting form of energy. In this paper, the potential of marine biomass is increasingly discussed, given the size of the resource in that more than three quarters of the surface of planet earth is covered by water.

바이오에너지는 화석연료의 소비를 감소시키는 기회를 제공한다. 태양, 바람, 수력발전 및 지열, 그리고 바이오매스 자원으로부터 생성된 에너지는 재생이 가능하다. 대부분의 바이오에너지들은 태양으로부터 직 간접적으로 생산되기 때문에 화석연료와 달리 신재생에너지의 충분한 공급이 가능하다. 또한 바이오에너지의 이용은 환경적인 측면 뿐 아니라 정치, 경제적으로 이익을 제공한다. 바이오에너지는 이산화탄소의 순증가가 없고 무공해의 에너지 형태를 제공하는 해양 자원으로부터 생산 될 수 있다. 본 총설에서는 지구의 약 75%가 바다로 이루어져 있음을 고려해 볼 때 바이오에너지 생산을 위한 해양 바이오매스의 잠재력에 대해 검토한다.

Keywords

Acknowledgement

Supported by : 해양바이오프로세스연구단

References

  1. Mclaren, J. S., "Crop Biotechnology Provides an Opportunity to Develop a Sustainable Future," Trends Biotechnol., 23(7), 339-342(2005) https://doi.org/10.1016/j.tibtech.2005.04.004
  2. Wright, L., "Worldwide Commercial Development of Bioenergy with a Focus on Energy Crop-based Projects," Biomass and Bioenergy, 30(8-9), 706-714(2006) https://doi.org/10.1016/j.biombioe.2005.08.008
  3. Agarwal, A. K., "Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines," Progr. Energ. Combust. Sci., 33(3), 233-271(2007) https://doi.org/10.1016/j.pecs.2006.08.003
  4. Arnulf, J. W., "Status of PV Research, Solar Cell Production and Market Implementation in Japan, USA and European Union," European Commission, Joint Research Center(2002)
  5. McNelis, B., "The Photovoltaic Business: Manufacturers and Markets," Electricity from Sunlight, IT Power, UK(1997)
  6. Demirbas, A., "Progress and Recent Trends in Biofuels," Progr. Energ. Combust. Sci., 33(1), 1-8(2007) https://doi.org/10.1016/j.pecs.2006.06.001
  7. Gereene, N., "Growing Energy: How Biofuels can Help end America's Oil Dependence," Natural Resources Defense Council, New York(2004)
  8. Asif, M. and Muneer, T., "Energy Supply, Its Demand and Security Issues for Developed and Emerging Economies," Rene. Sustain. Energ. Rev., 11(7), 1388-1413(2006)
  9. Kang, S. H., Choi S. J. and Kim, J. W., "Analysis of the World Energy Status and Hydrogen Energy Technology R&D of Foreign Countries," Trans. of the Korean Hydrogen and New Energy Society, 18(2), 216-223(2007)
  10. International Energy Outlood 2004, EIA (Energy Information Administration)(2004)
  11. Tolbert, N. E., in J. Preiss(Ed.), Regulation of atmosferic $CO_2$ and $O_2$ by photosynthetic Carbon Metabolism, Oxford University Press, Oxford, 8-33(1994)
  12. Chisti, Y., "Biodiesel from Microalgae," Biotechnol. Adv., 25(3), 294-306(2007) https://doi.org/10.1016/j.biotechadv.2007.02.001
  13. Huntley, M. and Redalje, D. G., "$CO_2$ Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal," Mitigation and Adaptation Strategies for Global Change, 12(4), 573-608(2007) https://doi.org/10.1007/s11027-006-7304-1
  14. Li, X., Xu, H. and Wu, Q., "Large-scale Biodiesel Production from Microalga Chlorella Protothecoids through Heterotrophic Cultivation in Bioreactors," Biotechnol. Bioeng., 98(4), 764-771(2007) https://doi.org/10.1002/bit.21489
  15. Pulz, O. and Gross, W., "Valuable Products from Biotechnology of Microalgae," Appl. Microbiol. Biotechnol., 65(6), 635-648 (2004) https://doi.org/10.1007/s00253-004-1647-x
  16. Berndes, G., Hoogwijk, M. and Van Den Broek, R., "The Contribution of Biomass in the Future Global Energy Supply: a Review of 17 Studies," Biomass and Bioenergy, 25(1), 1-28(2003) https://doi.org/10.1016/S0961-9534(02)00185-X
  17. Kanetsuna, Y., "New and Interesting Desmids (Zygnematales, Chlorophyceae) Collected from Asia," Phycological Research, 50(2), 101-113(2002) https://doi.org/10.1111/j.1440-1835.2002.tb00140.x
  18. Mchugh, D. J., "A Guide to the Seaweed Industry," Rome, FAO. FAO Fish. Tech. Pap., 441, 105(2003)
  19. Arne, J., "Present and Future Needs for Algae and Algal Products," Hydrobiologia, 260-261(1), 15-23(1993) https://doi.org/10.1007/BF00048998
  20. Skjak-Braek, G. and Martinsen, A., in M. D. Guiry, G. Blunden (Ed.), Seaweed Resources in Europe: Uses and Potential, John Wiley & Sons, Chichester, UK, 219-257(1991)
  21. Kloareg, B. and Quatrano, R. S., "Structure of the Cell Walls of Marine Algae and Ecophysical Functions of the Matrix Polysaccharides," Oceanogr. Mar. Biol. Ann. Rev., 26, 259-315(1988)
  22. Percival, E., "The Polysaccharides of Green, Red and Brown Seaweeds: Their Basic Structure, Biosynthesis and Function," British Phycological Journal, 14, 103-117(1979) https://doi.org/10.1080/00071617900650121
  23. Costanza, R., d'Arge, R., Groot, R. D., Farberk, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R. V., Paruelo, J., Raskin R. G. and Suttonkk, P., "The Value of World Ecosystem Services and Natural Capital," Nature, 387, 253-260(1997) https://doi.org/10.1038/387253a0
  24. Luning, K. and Pang, S. J., "Mass Cultivation of Seaweeds: Current Aspects and Approaches," J. Appl. Phycol., 15(2-3), 115-119(2003) https://doi.org/10.1023/A:1023807503255
  25. http://seaweed.ucg.ie
  26. http://bio.sch.ac.kr/~hwshin/STUDYDATA.htm
  27. Buck, B. H., Krause, G. and Rosenthal, H., "Extensive Open Ocean Aquaculture Development within Wind Farms in Germany: The Prospect of Offshore Co-management and Legal Constraints," Ocean Coast. Manag., 47(3-4), 95-122(2004) https://doi.org/10.1016/j.ocecoaman.2004.04.002
  28. Buck, B. C. and Buchholz, C. M., "The Offshore Ring: A New System Design for the Open Ocean Aquaculture of Macroalgae," J. Appl. Phycol., 16(5), 355-369(2004) https://doi.org/10.1023/B:JAPH.0000047947.96231.ea
  29. Reith, J. H., Deurwaarder, E. P., Hemmes, K., Curvers A. P. W. M., Brandeburg, W. and Zeeman, G., "Bio-offshore: Grootschalige Teelt Van Zeewieren in Combinatie Met Offshore Windparken in de Noordzee," ECN(2005)
  30. Chynoweth, D. P., "Review of Biomethane from Marine Biomass," Ph. D. Dissertation, Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida (2002)
  31. Reina, G. G., "Culture Collections and Herbaria in European Countries," European Communities, Italy(1996)
  32. Munoz, R. and Guieysse, B., "Algal-bacterial Processes for the Treatment of Hazardous Contaminants: A Review," Water Res., 40(15), 2799-2815(2006) https://doi.org/10.1016/j.watres.2006.06.011
  33. Davis, T. A., Volesky, B. and Mucci, A., "A Review of the Biochemistry of Heavy Metal Biosorption by Brown Algae," Water Res., 37(18), 4311-4330(2003) https://doi.org/10.1016/S0043-1354(03)00293-8
  34. Lee, M. G., Lim, J. H. and Kam S. K., "Biosorption Characteristics in the Mixed Heavy Metal Solution by Biosorbents of Marine Brown Algae," Korean J. Chem. Eng., 19(2), 277-284(2002) https://doi.org/10.1007/BF02698414
  35. Yu, Q. and Kaewsarn, P., "A Model for pH Dependent Equilibrium of Heavy Metal Biosorption," Korean J. Chem. Eng., 16(6), 753-757(1999) https://doi.org/10.1007/BF02698347
  36. Lee, J. S. and Lee, J. P., "Review of Advances in Biological $CO_2$ Mitigation Technology," Biotechnol. Bioproc. Eng., 8(6), 354-359(2003) https://doi.org/10.1007/BF02949279
  37. Slesser, M. and Lewis, C., Biological energy resources, John Wiley & Sons, New York(1979)
  38. Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P., "A Look Back at the U.S. Department of Energy's Aquatic Species Program-biodiesel from Algae," NREL/TP-580-24190. U.S. Department of Energy's Office of Fuels Development(1998)
  39. Ben-Amotz, A. and Tornabene, T. G., "Chemical Profile of Selected Species of Macroalgae with Emphasis on Lipids," J. Phycol., 21(1), 72-81(1985) https://doi.org/10.1111/j.0022-3646.1985.00072.x
  40. Banerjee, A., Sharma, R., Chisti, Y. and Banerjee, U. C., "Botryococcus Braunii: A Renewable Source of Hydrocarbons and Other Chemicals," Crit. Rev. Biotechnol., 22(33), 245-279(2002) https://doi.org/10.1080/07388550290789513
  41. Metzger, P. and Largeau, C., "Botryococcus Braunii: A Rich Source for Hydrocarbons and Related Ether Lipids," Appl. Microbiol. Biotechnol., 66(5), 486-496(2005) https://doi.org/10.1007/s00253-004-1779-z
  42. Xu, H., Miao, X. L. and Wu, Q., "High Quality Biodiesel Production from a Microalga Chlorella Protothecoides by Heterotrophic Growth in Fermenters," J. Biotechnol., 126(4), 499-507 (2006) https://doi.org/10.1016/j.jbiotec.2006.05.002
  43. Kishimoto, M., Okakura, T., Nagashima, H., Minowa, T., Yokoyama, S. and Yamaberi, K., "$CO_2$ Fixation and Oil Production Using Microalgae," J. Ferment. Bioengin. 78(6), 479-482(1994) https://doi.org/10.1016/0922-338X(94)90052-3
  44. Tsukahara, K. and Sawayama, S., "Liquid Fuel Production Using Microalgae," J. Jpn. Petrol. Inst., 48(5), 251-259(2005) https://doi.org/10.1627/jpi.48.251
  45. Valenzuela-Espinoza, E., Millan-Nunez, R. and Nunez-Cebrero, F., "Protein, Carbohydrate, Lipid and Chlorophyll Alpha Content in Isochrysis Aff. Galbana (Clone T-Iso) Cultured with a Low Cost Alternative to the f/2 Medium," Aquac. Eng, 25(4), 207-216(2002) https://doi.org/10.1016/S0144-8609(01)00084-X
  46. Negoro, M., Shioji, N., Miyamoto, K. and Miura, Y., "Growth of Microalgae in High $CO_2$ Gas and Effects of Sox and Nox," Appl. Biochem. Biotechnol., 28-9, 877-886(1991) https://doi.org/10.1007/BF02922657
  47. Hu, Q., Zhang, C. and Sommerfeld, M., "Biodiesel from Algae: Lessons Learned Over the Past 60 years and Future Perspectives," J. Phycol., 42(12), 1-48(2006)
  48. Kyle, D. J. and Gladue, R. M., "Eicosapentaenoic Acids and Methods for Their Production," U. S. Patent No. 5244921(1991)
  49. Zittelli, G. C., Rodolfi, L., Biondi, N. and Tredici, M. R., "Productivity and Photosynthetic Efficiency of Outdoor Cultures of Tetraselmis Suecica in Annular Columns," Aquaculture, 261(3), 932-943(2006) https://doi.org/10.1016/j.aquaculture.2006.08.011
  50. Brown, M. R., Dunstan, G. A., Norwood, S. J. and Miller, K. A., "Effects of Harvested Stage and Light on the Biochemical Composition of the Diatom Thalassiosira pseudonana," J. Phycol., 32(1), 64-73(1996) https://doi.org/10.1111/j.0022-3646.1996.00064.x
  51. Dijkstra, A. J., "Revisiting the Formation of Trans Isomers During Partial Hydrogenation of Triacylglycerol Oils," Eur. J. Lipid Sci. Tech., 108(33), 249-264(2006) https://doi.org/10.1002/ejlt.200500335
  52. Jang, E. S., Jung, M. Y. and Min, D. B., "Hydrogenation for Low Trans and High Conjugated Fatty Acids," Compr. Rev. Food Sci. Food Saf., 4(1), 22-30(2005) https://doi.org/10.1111/j.1541-4337.2005.tb00069.x
  53. Ross, P. E., "Grow Your Own," Am. Sci., 293(6), 25-26(2005)
  54. McInerney, M. J. and Bryant, M. P., in D. L. Wise(Ed.), "Fuel Gas Production from Biomass: Review of Methane Fermentation Fundamentals," CRC Press, Boca Raton, Florida(1983)
  55. Brock, T. D., Madigan, M. T., Martinko, J. M. and Parker, J., "Biology of Microorganisms," Prentice Hall, USA(1994)
  56. Legrand, R., "Methane From Biomass Systems Analysis and $CO_2$ Abatement Potential," Biomass and Bioenergy, 5(3-4), 301-316(1993) https://doi.org/10.1016/0961-9534(93)90079-J
  57. Bird, K. T., in K. T. Bird and P. H. Benson(Eds.), Seaweed Cultivation for Renewable Resources: Cost Analyses of Energy from Marine Biomass, Elsevier, Amsterdam, 327-350(1987)
  58. Bird, K. T., Chynoweth, D. P. and Jerger, D. E., "Effects of Marine Algal Proximate Composition on Methane Yields," J. Appl. Phycol., 2(3), 207-213(1990) https://doi.org/10.1007/BF02179777
  59. Chynoweth, D. P., Turick, C. E., Owens, J. M., Jerger, D. E. and Peck, M. W., "Biochemical Methane Potential of Biomass and Waste Feedstocks," Biomass and Bioenergy, 5(1), 95-111(1993) https://doi.org/10.1016/0961-9534(93)90010-2
  60. Kerner, K. N., Hanssen, J. F. and Pedersen, T. A., "Anaerobic Digestion of Waste Sludges from the Alginate Extraction Process," Bioresour. Technol., 37(1), 17-24(1991) https://doi.org/10.1016/0960-8524(91)90107-U
  61. Morand, P., Carpentier, B., Charlier, R. H., Maze, J., Orlandini, M., Plunkett, B. A., de Waart, J., in M. D. Guiry and G. Blunden (Eds), Seaweed Resources in Europe: Bioconversion of Seaweeds, John Wiley & Sons, Chichester, 95-148(1991)
  62. Markov, S. A., Bazin, M. J. and Hall D. O., "Advances in Biochem," Eng. Biotech., 52(1), 60-81(1995)
  63. Marz, Bakterien-Energiekraftwerke der Zukunft., Umwelt Magazin, pp53(1998)
  64. Levin, D. B., Pitt, L. and Love, M., "Biohydrogen Production: Prospects and Limitations to Practical Application," Int. J. Hydrogen Energy, 29(2), 173-185(2004) https://doi.org/10.1016/S0360-3199(03)00094-6
  65. Prince, R. C. and Kheshgi, H. S., "The Photobiological Production of Hydrogen: Potential Efficiency and Effectiveness as a Renewable Fuel," Crit. Rev. Microbiol., 31(1), 19-31(2005) https://doi.org/10.1080/10408410590912961
  66. Rupprecht, J., Hankamer, B., Mussgnug, J. H., Ananyev, G., Dismukes, G. C. and Kruse, O., "Perspectives and Advances of Biological $H_2$ Production in Microorganisms," Appl. Microbiol. Biotechnol., 72(3) 442-449(2006) https://doi.org/10.1007/s00253-006-0528-x
  67. Hankammer, B., Lehr, F., Rupprecht, J., Mussgnug, J. H., Posten, C. and Kruse, O., Photosynthetic Biomass and $H_2$ Production by Green Algae: from Bioengineering to Bioreactor Scale up, Physiologia Plantarum in Press(2007)
  68. Benemann, J. R. and Weare, N. M., "Hydrogen Evolution by Nitrogen Fixing Anabaena Cylindrica Cultures," Science, 184(4133), 174-175(1974) https://doi.org/10.1126/science.184.4133.174
  69. Amos, W. A., "Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae," NREL/MP-560-35593. National Renewable Energy Laboratory(2004)
  70. http://www.renewableenergyaccess.com
  71. Canakci, M. and Sanli, H., "Biodiesel Production from Various Feedstocks and Their Effects on the Fuel Properties," J. Ind. Microbiol. Biotechnol., 35(5), 431-441(2008) https://doi.org/10.1007/s10295-008-0337-6