• Title/Summary/Keyword: Eco-friendly Technology

Search Result 1,079, Processing Time 0.029 seconds

A Study on Lubricant additive of DME Common-rail Vehicle (DME 커먼레일 차량의 윤활향상제에 관한 연구)

  • Park, JungKwon;Kim, Hyunchul;Jeong, SooJin;Chon, MunSoo
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.15-18
    • /
    • 2013
  • The next generation alternative fuel of diesel, DME (Dimethyl Ether) discharges particulate matter hardly due to chemical structural as oxygen-fuel so it has the eco-friendly property. Despite these advantages, the DME has the technical difficulties to apply to the diesel engine because of a low calorific value, viscosity and compressibility effects. From this point of view, we performed experimental studies on improved reliability of DME common-rail vehicle and lubricity enhancement of DME fuel for empirical distribution of eco-friendly DME fuel. Also we analyzed solubility of lubrication enhancer according to a drop in temperature, try to secure reliability about core parts of DME vehicle by applying lubrication enhancer in the DME common-rail vehicle.

  • PDF

Conceptual Design for Underground Hydrogen Pipeline Monitoring System: Case Study on Fiber Optic Sensing (지하매설 수소 배관망 안전 모니터링 시스템의 개념 설계: 광섬유 기반 모니터링 사례를 중심으로)

  • Park, Jae-Woo;Yeom, Dong-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.673-686
    • /
    • 2022
  • Recently, as the importance of eco-friendly energy has increased hydrogen gas is in the spotlight as future energy. Due to its special properties, hydrogen gas is more difficult to detect requiring more precise sensing technology. The primary objective of this study is to design a concept of an underground hydrogen pipeline monitoring system. For this, the following research works are conducted sequentially; 1)selection of core technology for conceptual design, 2)state-of-the-art review, 3)design of a concept of the system. As a result, DAS(Distributed Acoustic Sensing), and DTS(Distributed Temperature Sensing) are selected as each core technology. Furthermore, a conceptual design of an underground hydrogen pipeline monitoring system is deducted. It is expected that the impact on the eco-friendly energy industry will be enormous due to the increasing interest in using hydrogen energy.

Eco-Friendly Light Emitting Diodes Based on Graphene Quantum Dots and III-V Colloidal Quantum Dots

  • Lee, Chang-Lyoul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.65-65
    • /
    • 2015
  • In this talk, I will introduce two topics. The first topic is the polymer light emitting diodes (PLEDs) using graphene oxide quantum dots as emissive center. More specifically, the energy transfer mechanism as well as the origin of white electroluminescence in the PLED were investigated. The second topic is the facile synthesis of eco-friendly III-V colloidal quantum dots and their application to light emitting diodes. Polymer (organic) light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nanomaterial without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence (EL) from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions. (Sci Rep., 5, 11032, 2015). New III-V colloidal quantum dots (CQDs) were synthesized using the hot-injection method and the QD-light emitting diodes (QLEDs) using these CQDs as emissive layer were demonstrated for the first time. The band gaps of the III-V CQDs were varied by varying the metal fraction and by particle size control. The X-ray absorption fine structure (XAFS) results show that the crystal states of the III-V CQDs consist of multi-phase states; multi-peak photoluminescence (PL) resulted from these multi-phase states. Inverted structured QLED shows green EL emission and a maximum luminance of ~45 cd/m2. This result shows that III-V CQDs can be a good substitute for conventional cadmium-containing CQDs in various opto-electronic applications, e.g., eco-friendly displays. (Un-published results).

  • PDF

Analysis of the Thermal Environment Characteristics of Thatched Roof for Eco-friendly Rural Housing Development -Focused on the Neolithic Thatched Roof Dugout Hut- (농촌 친환경 주거 개발을 위한 이엉지붕 열환경 특성 분석 -신석기시대 이엉지붕 움집을 대상으로-)

  • Song, Heon
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.16 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • Due to the development of civilization, the humans is privileged the rich of technologies for housing thermal environment. But, this kind of technological development caused enough trouble of energy excessive consumption. For solve this problem, many researchers strive to exploit the low energy sustainable techniques. For such a reason, the eco-friendly techniques of vernacular house are resurfacing. These traditional techniques are applied to a development of eco-friendly modern housing. They are no longer recognized as outdated products. On this context, this study proposes an scientific analysis on the thermal environment characteristics of Neolithic thatched-roof dugout hut(Um house). So far the several studies have been carried out in viewpoint of the history and structural compositions of the Um house which has been used as the normal housing for about 1000 years in the Neolithic era, however the thermal characteristics analysis of the Um house has never been studied. Um house is not a housing which has been composed by the scientific analysis or architectural design technology, but evolved empirically over a long period. This study on the thermal environment characteristics of Um house would provide basic information for the development of korean eco-friendly rural housing by korean climate characteristics. In this study, the thermal environmental characteristics of the Um house in the Neolithic era was analysed experimentally. The results of this study could be summarized as follows: 1. When the solar insolation and the ambient temperature in the daytime were $420W/m^2$ and $17^{\circ}C$ respectively, the surface temperature of the Um house roof covered with the rice straw was $37^{\circ}C$ and that in the roof $32^{\circ}C$, and in the conditions above the air temperature in the room was $15^{\circ}C$. 2. When the ambient relative humidity was 40%, that in the room of the Um house 50%, and at the ambient relative humidity of 90~100%, that in the room was 60%. 3. Through the experimental analysis, it was verified that the enthalpy and relative humidity is in an inverse relationship. 4. In general the comfort degree in the living space is changed with the seasonal climate, also in this study, the comfort degree in the room of the Um house in October and November was higher than that in May and June.

Sensitivity Analysis of the Effect of Soil Ecological Quality Information in Selecting Eco-Friendly Road Route (토양생태 등급 정보가 친환경도로노선 선정에 미치는 영향에 관한 민감도 분석)

  • Ki, Dong-Won;Kang, Ho-Geun;Lee, Sang-Eun;Heo, Joon;Park, Joon-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.37-44
    • /
    • 2008
  • Soil ecology has important roles in global ecosystems. However, soil ecological quality information is being ignored when assessing ecological impact of construction actions. And methods for classifying and assessing soil ecological quality have been very little established in comparison to those for animal and plant ecosystems. In this study, it was examined whether soil ecological quality information has influence on determining an eco-friendly route for a road construction project. For this, sensitivity analysis was systematically performed by varying the relative significance (weights) of soil ecological quality information among natural environmental and ecological factors. When the weight of soil ecological quality was greater than just 14%, the soil ecological quality information significantly influenced the determination of the eco-friendly routes for a specific road construction project. This demonstrates that soil ecological quality information has to be considered for more reliable environmental impact assessment, and also supports the validity of use of soil ecological quality information and its mapping technique in planning and siting of eco-friendly construction projects.

A Study on Forecasting of the Manpower Demand for the Eco-friendly Smart Shipbuilding (친환경 스마트 선박 인력 수요예측에 관한 연구)

  • Shin, Sang-Hoon;Shin, Yong-John
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.2
    • /
    • pp.1-13
    • /
    • 2023
  • This study forecasted the manpower demand of eco-friendly smart shipbuilding, whose importance and weight are increasing according to the environmental regulations of the IMO and the spread of the 4th industrial revolution technology. It predicted the shipbuilding industry manpower by applying various models of trend analysis and time series analysis based on data from 2000 to 2020 of Statistics Korea. It was found that the prediction applying geometric mean had the smallest gap among the trend and time series analysis methods in comparing between forecast results and actual data for the past 5 years. Therefore, the demand for manpower in the shipbuilding industry was predicted by using the geometric mean method. In addition, the manpower demand of smart eco-friendly ships wast forecasted by using the 2018 and 2020 manpower survey results of the Ministry of Trade, Industry and Energy and reflecting the trend of manpower increase in the shipbuilding industry. The result of forecasting showed that 62,001 person in 2025 and 85,035 people in 2030. This study is expected to contribute to the adjustment of manpower supply and demand and the training professional manpower in the future by increasing the accuracy of forecasting for high value-added eco-friendly smart ships.

Assessment of Levee Slope Reinforced with Bio-polymer by Image Analysis (영상분석을 통한 바이오폴리머로 보강된 제방사면 안정성 해석)

  • Ko, Dongwoo;Kang, Joongu
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.258-266
    • /
    • 2019
  • This study was conducted to apply natural river technologies to levees and examine the results. The new eco-friendly bio-polymer was applied, a combination of eco-friendly biopolymers and soil, to levee slope to enhance durability and eco-friendliness and to establish reinforcement measures against unstable levees due to overtopping. A semi-prototype levee of 1 m in height, 3 m in width, with a 1:2 slope and 5 m length, was constructed at the Andong River Experiment Center. The bio-soil mixed with the biopolymer and the soil at an appropriate ratio was treated with a 5 cm thickness on the surface of levee to perform the stability evaluation according to overtopping. Using the pixel-based analysis technique using the image analysis program, the breached area of levee slope was calculated over time. As a result, the time for complete decay occurs more than 12 times than that of ordinary soil levee. Therefore, when the new substance is applied to the surface of levee, the decay delay effect appears to be high.

An analysis on the drop impact simulation of dual pump cap container made of eco-friendly materials (친환경 소재로 형성된 듀얼 펌프캡 용기의 낙하충격 시뮬레이션 분석)

  • Wi, Eun-Chan;Ko, Min-Sung;Kim, Hyun-Jeong;Lee, Joong-Bae;Kim, Min-Su;Lee, Joo-Hyung;Kong, Jung-Shik;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.57-65
    • /
    • 2021
  • Pump cap is a product that is widely used due to its ease of use and simple operation. These pump caps are applied to heterogeneous functional cosmetics and are being developed as dual pump caps. However, the conventional dual pump cap has a problem in that it is inconvenient to use and leakage occurs. In addition, it is formed of a plurality of materials, and there is a problem that is difficult to recycle. Lately, since the problem of environmental pollution is getting serious, the dual pump cap, which is difficult to recycle, cannot be used. Currently, eco-friendliness has been considered in Korea, and there are no dual pump cap containers with excellent sealing performance. Therefore, in this study, a dual pump cap container made of eco-friendly material was designed. In addition, finite element analysis was performed to verify the design feasibility of the product.

Study of Etching Method for Plating Layer Formation of ABS Resin (ABS 수지상의 도금층 형성을 위한 에칭 방법 연구)

  • Choi, Kyoung Su;Choi, Ki Duk;Shin, Hyun Jun;Lee, Sang-Ki;Choi, Soon Don
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.128-136
    • /
    • 2014
  • In the present study, we successfully developed an eco-friendly chemical etching solution and proper condition for plating on ABS material. The mechanism of forming Ni plating layer on ABS substrate is known as following. In general, the etching solution used for the etching process is a solution of chromic acid and sulfuric acid. The etching solution is given to the surface resulting in elution of butadiene group, so-called anchor effect. Such a rough surface can easily adsorb catalyst resulting in the increase of adhesion between ABS substrate and Ni plating layer. However a use of chromic acid is harmful to environment. It is, therefore, essential to develop a new alternative solution. In the present study, we proposed an eco-friendly etching solution composed of potassium permanganate, sulfuric acid and phosphoric acid. This solution was testified to observe the surface microstructure and the pore size of electrical Ni plating layer, and the adhesive correlation between deposited layers fabricated by electro Ni plating was confirmed. The result of the present study, the newly developed, eco-friendly etching solution, which is a mixture of potassium permanganate 25 g/L, sulfuric acid 650ml/L and phosphoric acid 250ml/L, has a similar etching effect and adhesion property, compared with the commercially used chromium acid solution in the condition at $70^{\circ}C$ for 5 min.

Preparation and Characterization of Hydrophobic Coatings from Carnauba Wax/Lignin Blends

  • BANG, Junsik;KIM, Jungkyu;KIM, YunJin;OH, Jung-Kwon;YEO, wanmyeong;KWAK, Hyo Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.149-158
    • /
    • 2022
  • To realize the infinite possibilities of materials derived from wood, it is necessary to overcome the weak moisture stability of wood. Thus, the development of an eco-friendly hydrophobic coating agent is essential, and of these, woody biomass-based materials are strongly attractive as coatings. In this study, eco-friendly hydrophobic wood coatings were prepared using carnauba wax purified from palm leaves and sprouts, and kraft lignin. The physicochemical properties of the carnauba wax/lignin blends according to the ratio of carnauba wax and lignin were observed by morphology and functional group change. In addition, the coating performance of carnauba wax/lignin blend coatings was confirmed by measuring the contact angle change. It was found that the addition of lignin could accelerate the atomization of wax particles, and that micro-roughness can be realized when applied to the actual wood surface, to ensure that the coating effect over time lasts longer. In addition, it was confirmed that the addition of lignin increases the hydrogen-bond-based interaction with the wood of the coating, thereby providing better coating stability and increasing the durability of the coating solvent under friction. The carnauba wax/lignin paint developed in this way is eco-friendly because all components are made of wood-based raw materials and have an excellent affinity with wood surfaces. Therefore, it is expected to be applicable to the coating process of wood-plastic composites and timber composites.