• Title/Summary/Keyword: Earthquake magnitude

Search Result 481, Processing Time 0.025 seconds

A Study on Magnitude Scaling Factors and Screening Limits of Liquefaction Potential Assessment in Moderate Earthquake Regions (중진지역에 적합한 액상화 평가 생략기준 및 지진규모 보정계수에 관한 연구)

  • Park Keun-Bo;Park Young-Geun;Choi Jae-Soon;Kim Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.127-140
    • /
    • 2004
  • Conventional methods for the assessment of liquefaction potential were primarily for areas of severe earthquake zones (M=7.5) such as North America and Japan. Detailed earthquake related researches in Korea started in 1997, including development of the seismic design standards for port and harbour structures, which was later completed in 1999. Because most contents in the guidelines were quoted through literature reviews from North America and Japan, which are located in strong earthquake region, those are not proper in Korea, a moderate earthquake region. This requires further improvement of the present guidelines. Considering earthquake hazard data in Korea, use of laboratory tests based on irregular earthquake motion appears to be effective to reflect the dynamic characteristics of soil more realistically than those using simplified regular loading. In this study, cyclic triaxial tests using irregular earthquake motions are performed with different earthquake magnitudes, relative densities, and fines contents. Assessment of liquefaction potential in moderate earthquake regions is discussed based on various laboratory test results. Effects of these components on dynamic behavior of soils are discussed as well. From the test results, screening limits and magnitude scaling factors to determine the soil liquefaction resistance strength in seismic design were re-investigated and proposed using normalized maximum stress ratios under real irregular earthquake motions.

Evaluation of seismic performance of mid-rise reinforced concrete frames subjected to far-field and near-field ground motions

  • Ansari, Mokhtar;Ansari, Masoud;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.453-462
    • /
    • 2018
  • Damages to buildings affected by a near-fault strong ground motion are largely attributed to the vertical component of the earthquake resulting in column failures, which could lead to disproportionate building catastrophic collapse in a progressive fashion. Recently, considerable interests are awakening to study effects of earthquake vertical components on structural responses. In this study, detailed modeling and time-history analyses of a 12-story code-conforming reinforced concrete moment frame building carrying the gravity loads, and exposed to once only the horizontal component of, and second time simultaneously the horizontal and vertical components of an ensemble of far-field and near-field earthquakes are conducted. Structural responses inclusive of tension, compression and its fluctuations in columns, the ratio of shear demand to capacity in columns and peak mid-span moment demand in beams are compared with and without the presence of the vertical component of earthquake records. The influences of the existence of earthquake vertical component in both exterior and interior spans are separately studied. Thereafter, the correlation between the increase of demands induced by the vertical component of the earthquake and the ratio of a set of earthquake record characteristic parameters is investigated. It is shown that uplift initiation and the magnitude of tensile forces developed in corner columns are relatively more critical. Presence of vertical component of earthquake leads to a drop in minimum compressive force and initiation of tension in columns. The magnitude of this reduction in the most critical case is recorded on average 84% under near-fault ground motions. Besides, the presence of earthquake vertical components increases the shear capacity required in columns, which is at most 31%. In the best case, a direct correlation of 95% between the increase of the maximum compressive force and the ratio of vertical to horizontal 'effective peak acceleration (EPA)' is observed.

Optimization of Classification of Local, Regional, and Teleseismic Earthquakes in Korean Peninsula Using Filter Bank (주파수 필터대역기술을 활용한 한반도의 근거리 및 원거리 지진 분류 최적화)

  • Lim, DoYoon;Ahn, Jae-Kwang;Lee, Jimin;Lee, Duk Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.121-129
    • /
    • 2019
  • An Earthquake Early Warning (EEW) system is a technology that alerts people to an incoming earthquake by using P waves that are detected before the arrival of more severe seismic waves. P-wave analysis is therefore an important factor in the production of rapid seismic information as it can be used to quickly estimate the earthquake magnitude and epicenter through the amplitude and predominant period of the observed P-wave. However, when a large-magnitude teleseismic earthquake is observed in a local seismic network, the significantly attenuated P wave phases may be mischaracterized as belonging to a small-magnitude local earthquake in the initial analysis stage. Such a misanalysis may be sent to the public as a false alert, reducing the credibility of the EEW system and potentially causing economic losses for infrastructure and industrial facilities. Therefore, it is necessary to develop methods that reduce misanalysis. In this study, the possibility of seismic misclassifying teleseimic earthquakes as local events was reviewed using the Filter Bank method, which uses the attenuation characteristics of P waves to classify local and outside Korean peninsula (regional and teleseismic) events with filtered waveform depending on frequency and epicenter distance. The data used in our analysis were analyzed for maximum Pv values using 463 events with local magnitudes (2 < ML ≦ 3), 44 (3 < ML ≦ 4), 4 (4 < ML ≦ 5), 3 (ML > 5), and 89 outside Korean peninsula earthquakes recorded by the KMA seismic network. The results show that local and telesesimic earthquakes can be classified more accurately when combination of filtering bands of No. 3 (6-12 Hz) and No. 6 (0.75-1.5 Hz) is applied.

Estimation of Earthquake Magnitude-Distance Combination Corresponding to Design Spectrum in Korean Building Code 2016 (우리나라 건축물 설계 스펙트럼에 상응하는 지진규모와 진앙거리의 추정)

  • Jeong, Gi Hyun;Lee, Han Seon;Hwang, Kyung Ran
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2017
  • In this study, to estimate the combination of earthquake magnitude ($M_w$) and distance (R) corresponding to the design spectrum defined in Korean Building Code (KBC) 2016, the response spectra predicted from the attenuation relationships with the variation of $M_w$ (5.0~7.0) and R (10~30km) are compared with the design spectrum in KBC 2016. Four attenuation relationships, which were developed based on local site characteristics and seismological parameters in Southern Korea and Eastern North America (ENA), are used. As a result, the scenario ground motions represented by the combinations of $M_w$ and R corresponding to the design spectrum for Seoul defined in KBC 2016 are estimated as (1) when R =10 km, $M_w=6.2{\sim}6.7$; (2) when R = 15 km, $M_w=6.5{\sim}6.9$; and (3) when R = 20 km, $M_w=6.7{\sim}7.1$.

A STUDY OF THE HISTORICAL EARTHQUAKE CATALOG AND GUTENBERG-RICHTER PARAMETER VALUES OF THE KOREAN PENINSULA

  • Seo, Jeong-Moon;Choi, In-Kil;Rhee, Hyun-Me
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.55-64
    • /
    • 2010
  • The KIER's Korean historical earthquake catalog was revised for MMI${\geq}$VI events recorded from the years 27 A.D. to 1904. the magnitude of each event was directly determined from the criteria suggested by Seo. The criteria incorporated the damage phenomena of the Japanese historical earthquake catalog, recent seismological studies, and the results of tests performed on ancient structures in Korea. Thus, the uncertainty of the magnitudes of the Korean historical earthquakes can be reduced. Also, the Gutenberg-Richter parameter values were estimated based on the revised catalog of this study. It was determined that the magnitudes of a maximum inland and minimum offshore event were approximately 6.3 and 6.5, respectively. The Gutenberg-Richter parameter pairs of the historical earthquake catalog were estimated to be a=5.32${\pm}$0.21, b=0.95${\pm}$0.19, which were somewhat lower than those obtained from recent complete instrumental earthquakes. No apparent change in the Gutenberg-Richter parameter is observed for the $16^{th}-17^{th}$ centuries of the seismically active period.

Lessons learned from recent destructive Van, Turkey earthquakes

  • Yon, Burak;Sayin, Erkut;Calayir, Yusuf;Ulucan, Zulfu Cinar;Karatas, Mehmet;Sahin, Humeyra;Alyamac, Kursat Esat;Bildik, Abdullah Tevfik
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.431-453
    • /
    • 2015
  • A destructive earthquake, the magnitude of this earthquake was 7.2, hit Van, Turkey on October 23, 2011. After this devastating earthquake, a moderate earthquake which had 5.7 magnitude on November 9, 2011 occurred in Edremit, Van. These earthquakes caused heavy damages and collapses in many reinforced concrete buildings with loss of lives. In this paper, characteristics of ground motions of these earthquakes were studied and, deficiencies in structural elements and engineering faults such as poor workmanship and quality of construction, soft and weak stories, strong beam-weak column, short column, large overhang, hammering and unconfined gable wall were investigated. According to the observations, it was seen that, low quality of structural materials, lack of engineering services, inappropriate design and construction with insufficient detailing of the structural elements were the main reasons of heavy damages.

Assessment of maximum liquefaction distance using soft computing approaches

  • Kishan Kumar;Pijush Samui;Shiva S. Choudhary
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.395-418
    • /
    • 2024
  • The epicentral region of earthquakes is typically where liquefaction-related damage takes place. To determine the maximum distance, such as maximum epicentral distance (Re), maximum fault distance (Rf), or maximum hypocentral distance (Rh), at which an earthquake can inflict damage, given its magnitude, this study, using a recently updated global liquefaction database, multiple ML models are built to predict the limiting distances (Re, Rf, or Rh) required for an earthquake of a given magnitude to cause damage. Four machine learning models LSTM (Long Short-Term Memory), BiLSTM (Bidirectional Long Short-Term Memory), CNN (Convolutional Neural Network), and XGB (Extreme Gradient Boosting) are developed using the Python programming language. All four proposed ML models performed better than empirical models for limiting distance assessment. Among these models, the XGB model outperformed all the models. In order to determine how well the suggested models can predict limiting distances, a number of statistical parameters have been studied. To compare the accuracy of the proposed models, rank analysis, error matrix, and Taylor diagram have been developed. The ML models proposed in this paper are more robust than other current models and may be used to assess the minimal energy of a liquefaction disaster caused by an earthquake or to estimate the maximum distance of a liquefied site provided an earthquake in rapid disaster mapping.

On the Maximum Probable Earthquakes in the Korean Peninsula (한반도에서 발생 가능한 최대지진에 대하여)

  • 김성균
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.21-27
    • /
    • 2000
  • For earthquake hazard estimation the data containing large historical events and recent complete observations with various uncertainty should be used together. The traditional maximum likelihood method is not adequate for this kind work. The maximum probable earthquakes in the Korean Peninsula are estimated by the method of an extended maximum likelihood estimation. The method can handle data with various uncertainty. The maximum probable earthquake in the Korean Peninsula is appeared to be 7.14$\pm$0.34 in magnitude.

  • PDF

Assessment of Liquefaction Potential based on the Cyclic Triaxial Test (진동삼축시험에 기초한 액상화 평가)

  • 최재순
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.77-84
    • /
    • 1999
  • An assessment of liquefaction potential is made in principle by comparing earthquake induced shear stress to the liquefaction strength of the soil. In this research a modified method based on Seed and Idriss theory is developed for evaluating liquefaction strength of Jumunjon sand(Korean standard sand). Also the factors affecting liquefaction strenght such as cyclic shear stress amplitude and relative density are investigated and verified by using cyclic triaxial test. From the result the new relationships between cyclic shear stress ratio and number of load cycles are proposed for evaluating liquefaction strength under moderated magnitude(M=6.5) of earthquake.

  • PDF

The Nature of Earthquake and Earthquake Resistant Building Design (지진의 성격과 건축물 내진설계에 대하여)

  • 양완수
    • Journal of the Korean Professional Engineers Association
    • /
    • v.28 no.2
    • /
    • pp.13-20
    • /
    • 1995
  • This paper Is to help the structural engineers for a better understanding of "Earthquake" with regard to the nature o( earthquake and the effect of earthquake on building structures. This reveals that the damage Inflicted upon by earthquake varies with many factors such as : magnitude of earthquake, distance from epicenter, site conditions, building structural characteristics and etc.. It is emphasized that in order to resist very strong earthquake, the ductility demand in the building structure Is important, and the proper duc-tility enables the structure to demonstrate inelastic rotation capacity of the joints and thus the structure may absorb and dissipate the seismic energy. This also presents a comparison between the current Americal UBC Code and the Korean Code, and the author expresses some points of concern on each code. Since earthquake almost invariably strikes at times and places, it is suggested that the current Korean Build-ing Code should be revised to enforce more stringent regulation against possible strong earthquake in the Korean peninsula.

  • PDF