• Title/Summary/Keyword: EVs

Search Result 238, Processing Time 0.029 seconds

The investment point on cooperative innovation in EVs for the spoke-smart cities : focused on Nordic countries and Korea

  • Seo, Dae-Sung
    • The Journal of Economics, Marketing and Management
    • /
    • v.5 no.3
    • /
    • pp.1-11
    • /
    • 2017
  • E-infrastructural economy for ICT Living-Labs is a need for economic and cultural changes in various types of cars in accordance with the supply of the electric car. Depending on the number of cases by analyzing the supply and demand of electric vehicles among Korea and Northern Europe countries. it was indirectly proved that it makes economic growth. The research design is analyzed with the data and how to respond quickly to focus on the possibility of potential changes to the infrastructure realization and commercialization of government enterprises or electric cars through the ICT Living-Labs in Nordic countries. The data indicates that the leading commercialization emphasize on the development of the electric economic convergence and scalability for electric vehicle. When It shows the time of the infrastructure as ICT Living-Labs being delayed, it lowered growth target results for the development of the electric car industry in the future. All this is from the reason of opening the E-convergence economy over time. It is required that Korea should prepare E-convergence economy. Public regional energy should be present through the consistent selection of development for energy linking E-economy and E-trans distribution. Korea needs to be many difficulties in building the E- infrastructure for ICT Living-Labs. Unlike the Northern Europe it is to prepare the active support of both government and business. The role of the government discovers that the power generation through the quick selection of the industry, as well as to connect with the growth of the smart cities with the EVs industry.

Optimal installation of electric vehicle charging stations connected with rooftop photovoltaic (PV) systems: a case study

  • Heo, Jae;Chang, Soowon
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.937-944
    • /
    • 2022
  • Electric vehicles (EVs) have been growing to reduce energy consumption and greenhouse gas (GHG) emissions in the transportation sector. The increasing number of EVs requires adequate recharging infrastructure, and at the same time, adopts low- or zero-emission electricity production because the GHG emissions are highly dependent on primary sources of electricity production. Although previous research has studied solar photovoltaic (PV) -integrated EV charging stations, it is challenging to optimize spatial areas between where the charging stations are required and where the renewable energy sources (i.e., solar photovoltaic (PV)) are accessible. Therefore, the primary objective of this research is to support decisions of siting EV charging stations using a spatial data clustering method integrated with Geographic Information System (GIS). This research explores spatial relationships of PV power outputs (i.e., supply) and traffic flow (i.e., demand) and tests a community in the state of Indiana, USA for optimal sitting of EV charging stations. Under the assumption that EV charging stations should be placed where the potential electricity production and traffic flow are high to match supply and demand, this research identified three areas for installing EV charging stations powered by rooftop PV in the study area. The proposed strategies will drive the transition of existing energy infrastructure into decentralized power systems. This research will ultimately contribute to enhancing economic efficiency and environmental sustainability by enabling significant reductions in electricity distribution loss and GHG emissions driven by transportation energy.

  • PDF

Measurement of Micro Gas Turbine Power Pack Performance for Electric Vehicle Range Extenders Under Various Electrical Loads and Gear Ratios (전기자동차 레인지익스텐더를 위한 초소형 가스터빈 파워팩의 전기 부하 및 동력전달 기어비에 따른 성능 실험)

  • Sim, Kyuho;Park, Jisu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.371-378
    • /
    • 2015
  • Range extenders, which are power generation systems driven by small engines, extend the driving distance and time of electric vehicles (EVs) through continuous charging of batteries. The currently used range extenders with gasoline engines pose limitations with regard to the realization of high-power compact systems, owing to their complex structure and low energy density. In contrast, micro gas turbine (MGT) range extenders (MGT power packs) possess high power and low weight, and can therefore be significantly reduced in size despite increase in speed. In this study, an MGT power pack for the range extenders of EVs was developed using a turbo-prop micro turbine, an alternator for passenger vehicles and electric batteries. The operating characteristics of the MGT power pack were measured through a series of experiments conducted under electrical no-load and load conditions. Their power generation performance and efficiency were measured under various electrical loads and power transmission gear ratios. From the results, electrical load was found to have no influence on power generation performance. The maximum electrical power output was 0.8 kW at a core turbine speed of 150 krpm, and the application of 3:1 reduction gear to the turbine output shaft increased the power to 1.5 kW by 88%. This implies that the test results demonstrated stable power generation performance of the MGT power pack regardless of vehicle load changes, thus revealing its feasibility for use with the range extenders of EVs.

Design of Non-Flammable Electrolytes for Highly Safe Lithium-Ion Battery (리튬 이온전지의 안전성을 구현하기 위한 난연성 전해액의 설계)

  • Choi, Nam-Soon;Kim, Sung-Soo;Narukawa, Satoshi;Shin, Soon-Cheol;Cha, Eun-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.203-218
    • /
    • 2009
  • The development of lithium-ion battery (LIB) technologies and their application in the field of large-scale power sources, such as electric vehicles (EVs), hybrid EVs, and plug-in EVs require enhanced reliability and superior safety. The main components of LIBs should withstand to the inevitable heating of batteries during high current flow. Carbonate solvents that contribute to the dissociation of lithium salts are volatile and potentially combustible and can lead to the thermal runaway of batteries at any abuse conditions. Recently, an interest in nonflammable materials is greatly growing as a means for improving battery safety. In this review paper, novel approaches are described for designing highly safe electrolytes in detail. Non-flammability of liquid electrolytes and battery safety can be achieved by replacing flammable organic solvents with thermally resistive materials such as flame-retardants, fluorinated organic solvents, and ionic liquids.

Additional Improvement and Evaluation of Exhaust Ventilation Systems at Small and Medium Sized Enterprise (중.소규모 사업장의 국소배기장치 설치 실태와 문제점 및 개선방안)

  • Lim, Seong-Keun;Park, Doo-Yong;Kim, Won-Ki;Kim, Soo-Geun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Objectives : The purposes of this study were to evaluate exhaust ventilation systems(EVSs) and to suggest problems and improvements. Methods : For 50 small and medium-sized enterprises, we carried out evaluation of EVSs. We evaluated hoods with smoke tester and measurement of capture velocity. In addition, we used several indicators for performance evaluation designed in this study. Results : 1. Based on the smoke flow pattern and the criteria of occupational health and safety act, 67.8% of hoods were rated 'good' level at smoke test whereas 26.3% were rated 'good' level at measurement of capture velocity. 2. 29.3% of hoods, of which ratio of measured actual air flow at hood(Qah) to required ideal exhaust air flow at hood(Qih) was 1 or more, were rated 'good' level. 3. The % of EVS, of which ratio of measured actual air flow at stack(Qast) to total required ideal exhaust air flow at hood(Qith) was 1 or more, was 29.0%. 4. For the ratio of measured Qast to existing air flow at fan(Qfan), only 5% of EVSs were 1 or more and 26.0% were 0.8 or more but less than 1.0. 5. For the ratio of measured Qast to total measured actual exhaust air flow at hood(Qath), 74.0% were 0.8 or more but less than 1.0. 6. The percentage of EVS, of which ratio of total measured Qath to existing Qfan was 0.8 or more, was 19.0%. 7. The percentage of EVS, of which ratio of total measured Qath to total required ideal exhaust Qith was 1 or more, was 26.0%. 8. For the comprehensive evaluation indicators designed in this study, 29.0% were 0.8 or more. Conclusions : We found that few exhaust local ventilations at small and medium-sized enterprises were rated 'good' level and that most exhaust local ventilations had 'poor' design and installation. Therefore, relevant professional manpower and enterprises have to construct exhaust local ventilation where it is needed, and technical guidance and economic support are needed to improve 'poor' exhaust local ventilation after self-evaluation.

Lithium - A Critical Metal for Clean Energy Technologies: A Comprehensive Review on Challenges and Opportunities for Securing Lithium from Primary and Secondary Resources (리튬-청정 에너지 기술의 핵심금속: 1차 및 2차 자원으로부터 리튬 확보를 위한 도전과 기회에 대한 종합적 고찰)

  • Swain, Basudev;Kim, Min-seuk;Lee, Chan-Gi;Chung, Kyeong Woo;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.3-18
    • /
    • 2019
  • Due to the increasing demand for clean energy, the consumption of lithium ion batteries (LIBs) is expected to grow steadily. Therefore, stable supply of lithium is becoming an important issue globally. Commercially, most of lithium is produced from the brine and minerals viz., spodumene, although various processes/technologies have been developed to recover lithium from other resources such as low grade ores, clays, seawaters and waste lithium ion batteries. In particular, commercialization of such recycling technologies for end-of-life LIBs being generated from various sources including mobile phones and electric vehicles(EVs), has a great potential. This review presents the commercial processes and also the emerging technologies for exploiting minerals and brines, besides that of newly developed lithium-recovery-processes for the waste LIBs. In addition, the future lithium-supply is discussed from the technical point of view. Amongst the emerging processes being developed for lithium recovery from low-grade ores, focus is mostly on the pyro-cum-hydrometallurgical based approaches, though only a few of such approaches have matured. Because of low recycling rate (<1%) of lithium globally compared to the consumption of lithium ion batteries (56% of lithium produced currently), processing of secondary resources could be foresighted as the grand opportunity. Considering the carbon economy, environment, and energy concerns, the hydrometallurgical process may potentially resolve the issue.

Design of EMI reduction of Electric Vehicle Wireless Power Transfer Wireless Charging Control Module with Power Integrity and Signal Integrity (전원무결성과 신호무결성을 갖는 전기차 무선전력전송 무선충전컨트롤모듈 EMI 저감 설계)

  • Hong, Seungmo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.452-460
    • /
    • 2021
  • As the global electric vehicle (EV) market expands, eco-friendly EV that complement performance and safety problems continue to be released and the market is growing. However, in the case of EVs, the inconvenience of charging, safety problems such as electric shock, and electromagnetic interference (EMI) problems caused by the interlocking of various electronic components are problems that must be solved in EVs. The use of wireless power transmission technology can solve the problem of safety by not dealing with high current and high voltage directly and solving the inconvenience of charging EVs. In this paper, in order to reduce EMI a wireless charging control module, which is a key electronic component of WPT of EV. EMI reduction was designed through simulation of problems such as resonance and impedance that may occur in the power supply and signal distortion between high-speed communication that may occur in the signal part. Therefore, through the EMI reduction design with power integrity and signal integrity, the WPT wireless charging control module for electric vehicles reduces 10 dBu V/m and 15 dBu V/m, respectively, in 800 MHz to 1 GHz bands and 1.5 GHz bnad.

음성통신 서비스를 위한 코덱 표준화 동향

  • Lee, Mi-Suk;Kim, Do-Yeong;Lee, Byeong-Seon
    • Broadcasting and Media Magazine
    • /
    • v.16 no.4
    • /
    • pp.46-58
    • /
    • 2011
  • 본 고에서는 ITU-T와 3GPP를 중심으로 음성통신 서비스를 위해 표준으로 채택된 코덱의 특징과 현재 표준화가 진행중인 3GPP EVS(Enhanced Voice Service) 코덱 기술의 표준화 동향에 대해 살펴본다. ITU-T에서는 2000년 중반부터 기존의 협대역(전화선 대역) 보다 넓은 주파수 대역의 신호를 코딩할 수 있는 광대역과 슈퍼와이드밴드 코덱에 대한 표준화가 활발히 진행되었다. 3GPP에서는 2010년부터 4세대 이동 통신에서 고품질의 대화형 서비스를 제공하기 위해 음성뿐만 아니라 혼합컨텐츠와 오디오 신호에 대해서도 우수한 품질을 제공할 수 있는 코덱 기술에 대한 표준화를 진행하고 있다.

Study of OBC-LDC Integrated Circuit for xEVs (OBC-LDC 통합형 회로에 대한 연구)

  • Kim, Issac;Lee, Sunho;Lee, Hyunwoo;Jang, Yu-Nam;Park, Jung-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.401-402
    • /
    • 2020
  • 본 논문에서는 차량 탑재형 충전기 (OBC)와 저 전압 배터리 충전기 (LDC)의 각 기능에 대해 분석한다. 또한, 두 배터리 충전기를 통합한 OBC-LDC 통합형 회로의 장·단점과 기능에 대해 분석한다. 또한, OBC-LDC 통합형 회로에 대한 두 토폴로지의 장·단점을 비교 분석하고, PSIM을 사용하여 각 토폴로지에 대한 시뮬레이션을 진행하여 회로의 동작 및 성능을 비교 분석한다.

  • PDF