• Title/Summary/Keyword: EMTDC/PSCAD

Search Result 690, Processing Time 0.028 seconds

A Study on the Voltage Stabilization Method of Distribution System Using Battery Energy Storage System and Step Voltage Regulator

  • Kim, Byung-ki;Park, Jae-Beom;Choi, Sung-Sik;Jang, Moon-Seok;Rho, Dae-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • In order to maintain customer voltages within the allowable limit($220{\pm}13V$) as much as possible, tap operation strategy of SVR(Step Voltage Regulator) which is located in primary feeder, is widely used for voltage control in the utilities. However, SVR in nature has operation characteristic of the delay time ranging from 30 to 150 sec, and then the compensation of BESS (Battery Energy Storage System) during the delay time is being required because the customer voltages in distribution system may violate the allowable limit during the delay time of SVR. Furthermore, interconnection of PV(Photovoltaic) system could make a difficultly to keep customer voltage within the allowable limit. Therefore, this paper presents an optimal coordination operation algorithm between BESS and SVR based on a conventional LDC (Line Drop Compensation) method which is decided by stochastic approach. Through the modeling of SVR and BESS using the PSCAD/EMTDC, it is confirmed that customer voltages in distribution system can be maintained within the allowable limit.

Protection Coordination Analysis for Distribution Systems Integrated with Distributed Generation (분산전원이 도입된 배전계통의 보호협조 해석방법)

  • Kim, Jae-Eon;Kim, Eui-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2279-2284
    • /
    • 2011
  • In most of radial distribution systems, the overcurrent protection coordination is adopted for the protection of apparatus and the improvement of electrical power system reliability. The protection coordination structure in distribution substation is composed of several circuit breakers(CB) with distribution lines originating from one substation bus under one transformer, which trip for their fault current. But sufficient analysis is necessary for the capacity of CB's in distribution systems with several distribution generations(DG). In this paper, a protection coordination method not to exceed the traditional capacity of CB's was proposed and certified through simulation by the PSCAD-EMTDC S/W.

A Study on the Modification of Frequency Detection Position for Frequency Source in HVDC System Using of AC Voltage (AC전압을 이용한 HVDC 시스템의 주파수 신호원 검출위치 변경에 관한 연구)

  • Park, Jong-Kwang;Kim, Chan-Ki;Yang, Byeong-Mo;Jung, Gil-Jo;Han, Byoung-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.100-108
    • /
    • 2005
  • In this paper deals with the frequency control of the HVDC scheme linking Haenam to Cheju Island. The primary aim of the study is to develop and evaluate a new frequency control that can be employed without having to utilise the existing Synchronous Compensators(Gas Turbines). Transient condition studies are performed utilising the detailed control strategies for the HVDC link, implemented in PSCAD/EMTDC. Study cases are completed involving synchronous compensators trip and load ripping events and study plots presented. It is demonstrated that the existing frequency measurement can be replaced by one derived from the AC network alone, incorporated into a new frequency control algorithm and gives effective frequency control and dynamic performance.

Comparative Analysis on Current Limiting Characteristics of Hybrid Superconducting Fault Current Limiters (SFCLs) with First Half Cycle Limiting and Non-Limiting Operations

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.659-663
    • /
    • 2012
  • The application of large power transformer into a power distribution system was inevitable due to the increase of power demand and distributed generation. However, the decrease of the power transformer's impedance caused the short-circuit current of the power distribution system to be increase thus, the higher short-circuit current exceeded the cut-off ratings of the protective devices such as circuit breaker. To solve these problems, several countermeasures have been proposed to protect the power system effectively from higher fault current and the superconducting fault current limiter (SFCL) has been expected to be the promising countermeasure. In spite of excellent current limiting performances of the SFCL, on the other hand, the efforts to apply the SFCL into power system has been delayed due to both the limited spaces for the SFCL's installation and its long recovery time after the fault removal. In order to solve these problems, a hybrid SFCL, which can perform either first half cycle limiting of first half cycle non-limiting operation, has been developed by corporation of LSIS (LS Industrial System) and KEPCO (Korea Electric Power Corporation). In this paper, we tried to requirements hybrid SFCL by PSCAD/EMTDC. Simulation results of our analysis of the hybrid SFCL is that its accompanied the characteristics both the limit the fault current and quick recovery caused by the less impact from superconductor.

A Study on Islanding Detection of Distributed Generation Considering Fault Location (사고위치를 고려한 분산전원의 단독운전 상태 검출에 관한 연구)

  • 정승복;김재철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.118-123
    • /
    • 2004
  • This paper studies islanding detection of DG(distributed generation) considering fault location. Through the past studies, we found that islanding detection has been studied that DG disconnected when power islanding was detected by power state change and output change of DG. But, fault location was not considered. For example, fault in adjacent distribution line, fault on interconnection line fault, load shave by overload and normal operation were not considered. In this paper, We distinguish these considerations through power state change. Also, we proved islanding detection algorithm through PSCAD/EMTDC simulation.

Dynamic Interaction Analysis of Interconnected Wind Power Generator using Computer Simulation and Real-Size Hardware Simulator (컴퓨터 시뮬레이션과 실규모 하드웨어시뮬레이터를 이용한 계통연계 풍력발전의 응동특성 분석)

  • Yun, Dong-Jin;Han, Byung-Moon;Choy, Young-Do;Jeon, Young-Soo;Jeong, Byoung-Chang;Chung, Yong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1047_1048
    • /
    • 2009
  • This paper describes comparative analysis results about the dynamic interaction of interconnected wind power system using the actual-size hardware simulator and the simulation model with PSCAD/EMTDC. The hardware simulator, which is composed of 2.0MVA induction motor with drive system and 1.5MW doubly-fed induction generator, was built and tested in Go-Chang Test Site of KEPCO for analyzing the dynamic interaction with the interconnected distribution system. The operation of hardware simulator was verified through comparative analysis between experimental results and simulation results obtained by simulation model with PSCAD/EMTDC. The developed hardware simulator and simulation model could be effectively used for analyzing the dynamic interaction, which has various phenomena depending on the wind variation and the network state of interconnected power system.

  • PDF

Performance Comparison Analysis for Interconnected Wind Power Generator using Computer Simulation and Real-Size Hardware Simulator (컴퓨터시뮬레이션과 실용량 하드웨어시뮬레이터를 이용한 계통연계 풍력발전의 성능비교분석)

  • Yun, Dong-Jin;Oh, Seung-Jin;Han, Byung-Moon;Jeong, Byoung-Chang;Jung, Yong-Ho;Choy, Young-Do;Jeon, Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.263-269
    • /
    • 2009
  • This paper describes comparative analysis results about the dynamic interaction of interconnected wind power system using the actual-size hardware simulator and the simulation model with PSCAD/EMTDC. The hardware simulator, which is composed of 2.0MVA induction motor with drive system and 1.5MW doubly-fed induction generator, was built and tested in Go-Chang Test Site of KEPCO for analyzing the dynamic interaction with the interconnected distribution system. The operation of hardware simulator was verified through comparative analysis between experimental results and simulation results obtained by simulation model with PSCAD/EMTDC. The developed hardware simulator and simulation model could be effectively used for analyzing the dynamic interaction, which has various phenomena depending on the wind variation and the network state of interconnected power system.

Assessment on Power Quality of Grid-Connected PV System Based on Incremental Conductance MPPT Control (증분컨덕턴스 MPPT제어 기반 계통연계형 태양광발전시스템의 전력품질 평가)

  • Seol, Jae-Woong;Jang, Jae-Jung;Kim, Dong-Min;Lee, Seung-Hyuk;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.8-13
    • /
    • 2007
  • During the last years, there has been an increased interest in the new energy such as photovoltaic(PV) system from the viewpoint of environmental pollution. In this regard, this paper estimates the power quality of grid-connected PV system. As the maximum power operating point(MPOP) of photovoltaic(PV) power systems alters with changing atmospheric conditions, the efficiency of maximum power point tracking(MPPT) is important in PV power systems. Moreover, grid-connected PV system occurs some problems such as voltage inequality and harmonics. Therefore, this paper presents the results of a grid-connected PV system modeling that contains incremental conductance MPPT controller by PSCAD/EMTDC simulator and investigates the influence that can occur in the grid-connected PV system from aspect of power quality, i.e. voltage drop, total harmonic distortion(TDD) and total demand distortion(TDD). For the case study, the measured data of the PV way in Cheongwadae, Seoul, Korea is used.

New Serial and Parallel Sin+Cos PSS1A PSS Design and Analysis

  • Lee Sang-Seung;Li Shan-Ying;Jang Gwang-Soo;Park Jong-Keun;Moon Seung-Il;Yoon Yong-Tae
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.378-384
    • /
    • 2005
  • This paper proposes a new series and parallel Sin+Cos PSS (power system stabilizer) for the purpose of improving the existing PSS1A's performance. The purpose of the PSS is to enhance the damping of power system oscillations through injection of auxiliary signals for an excitation control terminal. The proposed series and parallel Sin+Cos PSS is connected adding the Sin+Cos terms additionally with the serial and parallel connection in a conventional PSS1A. The proposed controller is aimed at considering the damping of oscillation when it changes parameter fluctuations or operational load variations in a power system. The electric power system used is the KEPCO system and the voltage of the power transmission line is 154kV and 345kV. The PSCAD/EMTDC package is used to authorize the effect of the proposed controller. Simulations were shown by and compared with the waveforms for frequency, voltage and electric power.

Power Quality Evaluation of An IAT(Intra Airport Transit) System in Incheon International Airport (인천 국제공항청사 경전철 도입에 따른 고조파 영향 분석)

  • Lee, Jun-Kyong;Lee, Seung-Hyuk;Kim, Jin-O;Jung, Hyun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.238-240
    • /
    • 2005
  • This paper presents harmonic evaluation of an IAT(Intra Airport Transit) system in Incheon International Airport. It will be used electric vehicles with 80 kW per car that are produced Mitsubishi Heavy Industries Ltd, and one car is constructed with SIV(Static Inverter), VVVF controller and two induction motor. The operated vehicles in the IAT system are rapidly changing DC load and at a feeding substation, 3-phase electric power is transferred to DC 750 V by rectifier. Since, vehicles are also changing continuously, the voltages for the load fluctuate in the IAT system, and moreover, the fluctuating voltages generate high-order har -monies. This means that there is the difficulty in maintaining power quality in KEPCO systems' side. Therefore, the power quality of the IAT system in Incheon International Airport is evaluated using PSCAD/EMTDC simulator in the paper The THD(Total Harmonic Distortion) of voltages and TDD(Total Demand Distortion) of currents, indices are calculated for the IAT system using the results of PSCAD/EMTDC dynamic simulation.

  • PDF