• 제목/요약/키워드: EMI SE

검색결과 72건 처리시간 0.023초

EMI 스프레이 코팅막의 차폐효과를 측정하기 위한 정확한 방법 (An Accurate Method to measure Shielding Effectiveness of EMI Spray Coating Film)

  • 허정;이원희
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권4호
    • /
    • pp.79-83
    • /
    • 2018
  • EMI 스프레이 코팅막의 차폐효과(Shield Effectiveness, SE)를 측정하기 위한 정확한 방법을 제안하였다. 고주파 시뮬레이션을 한 후에 원형 동축 표준 측정기를 제작하였다. 원형 동축 표준 측정기에 삽입하기 위하여 EMI 스프레이 코팅막의 시료를 가공하였다. 차폐효과 측정을 위한 측정기는 에이질런트 8722ES 벡터 네트워크 분석기를 이용하였다. 이러한 측정기와 측정시료의 구성으로 구리와 은의 혼합 스프레이 코팅 시료의 정확한 차폐효과를 측정하였다. 동박 시료의 차폐효과는 70 dB로 측정되었고, 구리와 은의 혼합 스프레이 코팅 시료의 차폐효과는 60 dB로 측정되었다. 이와 같은 측정 결과로 원형 동축 표준 측정기의 신뢰성을 확인하였다.

도전섬유의 전자파 차폐특성에 미치는 섬유구조 및 도금방법의 영향 (Effect of Fabric Structure and Plating Method on EMI Shielding Property of Conductive Fabric)

  • 김동현;이성준
    • 한국표면공학회지
    • /
    • 제48권4호
    • /
    • pp.149-157
    • /
    • 2015
  • We investigated the effects of the fabric structure or the kinds of plated metals on the electromagnetic interference shielding effectiveness (EMI SE) by means of electroless plating on polyester fabric. We found that the weight of deposited metal, EMI SE, and flexibility of the conductive fabric for EMI shield is affected by morphology of fabric and structure of fiber. The EMI SE of conductive fabric plated Ni/Cu/Ni by electroless plating method on draw textured yarn (DTY) polyester was in the practically useful range of above 70 dB over a wide frequency range of 10 MHz to 1.0 GHz at the surface resistivity of $0.05{\Omega}/{\square}$. Au or Ag plated conductive fabric by immersion plating method is not able to provide for a good EMI SE.

Electromagnetic interference(EMI) shielding efficiency(SE) charhcteristics of IMI multilayer/PMMA structure for plasma display panel(PDP) filter.

  • Lee, Jung-Hyun;Sohn, Sang-Ho;Cho, Yong;Lee, Sang-Gul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.872-876
    • /
    • 2006
  • This study was made to examine the electromagnetic interference(EMI) shielding effect (SE) of multilayered thin films in which indium-tin oxide(ITO) and Ag were deposited alternately from 3layer to 9 layer on Poly Methyl Meth Acrylate(PMMA) substrate at room temperature using a PF sputtering. We measured optical and electrical characteristics by UV-spectrometer and 4 point probe. The measurement of EMI SE in frequency range from 50MHz to 1.5GHz was performed by using ASTM D4935-89 method. We compared the measured EMI SEs with theoretical simulation data. We obtained relatively low resistivity and high transmittance from the EMI SE multilayers. In this study, we obtain good optical electrical characteristics with a minimun transmittance of about 60% at 550nm wavelength and sheet resistance of $2{\sim}3ohm/sq$., respectivity. Measured EMI SEs were over 50dB and similar to theoretical simulation data.

  • PDF

시판 전자기파 차단 직물의 차폐효과 및 물성 (EMI shielding Effectiveness and the Physical Properties of Commercial EMI shielding Fabrics)

  • 한은경;오경화;김은애
    • 한국의류학회지
    • /
    • 제23권5호
    • /
    • pp.694-702
    • /
    • 1999
  • By using commercial available electromagnetic interference (EMI) shielding fabrics, EMI shielding effectiveness(SE) and the physical properties were investigated. Thirteen specimens were chosen six fabrics were non-electrolytic plated with Cu, six plated with Cu+Ni and one plated with Ni, SE was measured by RF Impedance Analyzer HP4291A(Hewlett Co, Ltd)at the frequency of 100MHz-1.8GHz. The results showed that the commercial EMI shielding fabrics provided SE values over 30dB at the frequency of 100MHz-1.8GHz. Fabrics plated with Cu showed more effective shielding than those plated with Ni. The thickness of coating and fabric count were also influential factors on SE. Tensile properties were acceptable for lining fabrics but water vapor transport properties indicated that the better treatment condition were suggested to improve comfort properties.

  • PDF

EMI shielding effectiveness and mechanical properties of MWCNTs-reinforced biodegradable epoxy matrix composites

  • Yim, Yoon-Ji;Chung, Dong Chul;Park, Soo-Jin
    • Carbon letters
    • /
    • 제22권
    • /
    • pp.36-41
    • /
    • 2017
  • Biodegradable epoxy (B-epoxy) was prepared from diglycidyl ether of bisphenol A and epoxidized linseed oil. The mechanical properties of B-epoxy composites reinforced with multi-walled carbon nanotubes (MWCNTs/B-epoxy) were examined by employing dynamic mechanical analysis, critical stress intensity factor ($K_{IC}$) tests, and impact strength tests. The electromagnetic interference shielding effectiveness (EMI-SE) of the composites was evaluated using reflection and absorption methods. Mechanical properties of MWCNTs/B-epoxy were enhanced with an increase in the MWCNT content, whereas they deteriorated when the MWCNT content was >5 parts per hundred resin (phr). This can likely be attributed to the entanglement of MWCNTs with each other in the B-epoxy due to the presence of an excess amount of MWCNTs. The highest EMI-SE obtained was ~16 dB for the MWCNTs/B-epoxy composites with a MWCNT content of 13 phr at 1.4 GHz. The composites (13 phr) exhibited the minimum EMI-SE (90%) when used as shielding materials at 1.4 GHz. The EMI-SE of the MWCNTs/B-epoxy also increased with an increase in the MWCNT content, which is a key factor affecting the EMI-SE.

Electromagnetic Interference Shielding Effectiveness of Electroless Nickel-plated MWCNTs/CFs-reinforced HDPE Matrix Composites

  • Choi, Woong-Ki;Hong, Myung-Sun;Lee, Hae-Seong;An, Kay-Hyeok;Bang, Joon-Hyuk;Lee, Young Sil;Kim, Byung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.597-600
    • /
    • 2014
  • In this work, the electromagnetic interference shielding effectiveness (EMI-SE) of carbon nanotube/carbon fiber-reinforced HDPE matrix composites are investigated with various preparation conditions, such as the carbon fiber and carbon nanotube content, the presence of metal additives, as well as mixing speed and time. It was found that the EMI-SE of the composites increased with filler contents and metal additives. These results indicate that the content and length of carbonaceous fillers determine the electric networks in the composites, resulting in the control of the EMI-SE of the composites.

Effects of Morphology on the Electrical and Mechanical Properties of the Polycarbonate/Multi-Walled Carbon Nanotube Composites

  • Kum Chong-Ku;Sung Yu-Taek;Han Mi-Sun;Lee Heon-Sang;Lee Sun-Jeong;Joo Jin-Soo;Kim Woo-Nyon
    • Macromolecular Research
    • /
    • 제14권4호
    • /
    • pp.456-460
    • /
    • 2006
  • The electrical, morphological, and mechanical properties of poly carbonate (PC)/multi-walled carbon nan-otube (MWNT) composites were studied by electrical conductivity, electromagnetic interference shielding efficiency (EMI SE), scanning electron microscopy, and tensile strength measurements. In the electrical property analysis of the PC/MWNT composites, the percolation threshold of the PC/MWNT composites was observed between 1.5 and 2.5 wt% MWNT content. From the electrical conductivity and EMI SE studies, the theoretical values of the EMI SE were in good agreement with the experimental values of the EMI SE. From the morphology of the PC/MWNT composites, it was observed that MWNT is dispersed homogenously in the PC matrix. From the electrical conductivity and morphological studies, it was suggested that the percolation threshold of the PC/MWNT composites is related with the morphological results in that MWNT is apparently interconnected to form an electrical pathway. The mechanical properties of the PC/MWNT composites peaked at the MWNT content of 2.5 wt%.

Electrical Properties of CNT and Carbon Fiber Filled Hybrid Composites Based on PA66

  • Lee, Minji;Park, Se-Ho;Jhee, Kwang-Hwan;Kye, Hyoungsan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • 제56권2호
    • /
    • pp.65-71
    • /
    • 2021
  • In recent times, the demand for electronic devices has increased because of advancements in the electronics industry. Consequently, research on shielding against electromagnetic interference (EMI) from electronic devices has also progressed significantly. In particular, research on imparting electrical conductivity to plastic has seen substantial progress. In this study, the effect of hybrid fillers comprising carbon fiber (CF) and carbon nanotubes (CNTs) on the electrical properties of polyamide 66 (PA66) composites was investigated. PA66 composites were prepared using a BUSS Co-Kneader single-screw extruder. EMI shielding effectiveness (SE) increased with the increasing addition of unsized CF (UCF), sized CF (SCF), and CNTs. For the PA66/SCF/CNT hybrid filler composites, EMI SE significantly increased with the increase in SCF content. Finally, the hybrid filler comprising SCF and CNTs may have a synergistic effect on the EMI SE and surface resistivity of PA66/SCF/CNT composites.

다중벽 탄소나노튜브강화 폴리프로필렌 나노복합재료의 전자파 차폐효과 및 기계적 특성 (Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of MWCNT-reinforced Polypropylene Nanocomposites)

  • 임윤지;서민강;김학용;박수진
    • 폴리머
    • /
    • 제36권4호
    • /
    • pp.494-499
    • /
    • 2012
  • 본 연구에서는 다중벽 탄소나노튜브(MWCNT)의 함량을 1에서 10 wt%까지 달리하여 MWCNT 강화 폴리프로필렌(PP) 나노복합재료의 전자파 차폐효과 및 기계적 특성에 미치는 영향에 대해서 살펴보았다. 전기전도도는 4단자법으로 측정하였고, 전자파 차폐효과는 흡수와 반사방법으로 분석하였다. 기계적 특성은 임계응력세기인자($K_{IC}$) 측정을 통하여 고찰하였으며, 모폴로지는 주사전자현미경(SEM)으로 관찰하였다. 실험결과, MWCNT의 함량이 증가함에 따라 차폐효과가 향상됨을 확인할 수 있었으며, MWCNT의 함량이 전자파 차폐효과를 결정하는 중요한 요소임을 알 수 있었다. $K_{IC}$값도 MWCNT의 함량이 증가할수록 큰 값을 가지는 것을 확인할 수 있었으나 5 wt% 이상에서는 오히려 감소하였다. 이는 과량의 MWCNT가 PP 내에서 서로 뭉침으로 인하여 $K_{IC}$값을 감소시킨 것으로 판단된다.

Detection of electromagnetic interference shielding effect of Hanji mixed with carbon nanotubes using nuclear magnetic resonance techniques

  • Byun, Young Seok;Chae, Shin Ae;Park, Geun Yeong;Lee, Haeseong;Han, Oc Hee
    • Carbon letters
    • /
    • 제27권
    • /
    • pp.90-97
    • /
    • 2018
  • Electromagnetic interference (EMI) shielding is an important issue in modern daily life due to the increasing prevalence of electronic devices and their compact design. This study estimated EMI-shielding effect (EMI-SE) of small ($8-14{\times}17mm$) Hanji (Korean traditional paper) doped with carbon nanotubes (CNTs) and compared to Hanji without CNT using $^2H$ (92.1 MHz) and $^{23}Na$ (158.7 MHz) nuclear magnetic resonance (NMR) peak area data obtained from 1 M NaCl in $D_2O$ samples in capillary tubes that were wrapped in the Hanji samples. The simpler method of using the variation of reflected power and tuning frequency by inserting the sample into an NMR coil was also tested at 242.9, 158.7, and 92.1 MHz. Overall, EMI shielding was relatively more effective at the higher frequencies. Our results validated that NMR methods to be useful to evaluate EMI-SE, particularly for small, flexible shielding materials, and demonstrated that EMI shielding by absorption is dominant in Hanji mixed with CNT.