DOI QR코드

DOI QR Code

EMI shielding effectiveness and mechanical properties of MWCNTs-reinforced biodegradable epoxy matrix composites

  • Received : 2016.09.04
  • Accepted : 2017.02.13
  • Published : 2017.04.30

Abstract

Biodegradable epoxy (B-epoxy) was prepared from diglycidyl ether of bisphenol A and epoxidized linseed oil. The mechanical properties of B-epoxy composites reinforced with multi-walled carbon nanotubes (MWCNTs/B-epoxy) were examined by employing dynamic mechanical analysis, critical stress intensity factor ($K_{IC}$) tests, and impact strength tests. The electromagnetic interference shielding effectiveness (EMI-SE) of the composites was evaluated using reflection and absorption methods. Mechanical properties of MWCNTs/B-epoxy were enhanced with an increase in the MWCNT content, whereas they deteriorated when the MWCNT content was >5 parts per hundred resin (phr). This can likely be attributed to the entanglement of MWCNTs with each other in the B-epoxy due to the presence of an excess amount of MWCNTs. The highest EMI-SE obtained was ~16 dB for the MWCNTs/B-epoxy composites with a MWCNT content of 13 phr at 1.4 GHz. The composites (13 phr) exhibited the minimum EMI-SE (90%) when used as shielding materials at 1.4 GHz. The EMI-SE of the MWCNTs/B-epoxy also increased with an increase in the MWCNT content, which is a key factor affecting the EMI-SE.

Keywords

References

  1. Chung DDL. Electromagnetic interference shielding effectiveness of carbon materials. Carbon, 39, 279 (2001). https://doi.org/10.1016/S0008-6223(00)00184-6.
  2. Dhawan R, Kumari S, Kumar R, Dhawan SK, Dhakate SR. Mesocarbon microsphere composites with $Fe_3O_4$ nanoparticles for outstanding electromagnetic interference shielding effectiveness. RSC Adv, 5, 43279 (2015). https://doi.org/10.1039/C5RA03332B.
  3. Chen YJ, Li Y, Chu BTT, Kuo IT, Yip M, Tai N. Porous composites coated with hybrid nano carbon materials perform excellent electromagnetic interference shielding. Compos Part B Eng, 70, 231 (2015). https://doi.org/10.1016/j.compositesb.2014.11.006.
  4. Kwon S, Ma R, Kim U, Choi HR. Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber. Carbon, 68, 118 (2014). https://doi.org/10.1016/j.carbon.2013.10.070.
  5. Kumar P, Shahzad F, Yu S, Hong SM, Kim YH, Koo CM. Largearea reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon, 94, 494 (2015). https://doi.org/10.1016/j.carbon.2015.07.032.
  6. Yim YJ, Rhee KY, Park SJ. Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites. Compos Part B Eng, 98, 120 (2016). https://doi.org/10.1016/j.compositesb.2016.04.061.
  7. Yuping D, Shunhua L, Hongtao G. Investigation of electrical conductivity and electromagnetic shielding effectiveness of polyaniline composite. Sci Technol Adv Mater, 6, 513 (2005). https://doi.org/10.1016/j.stam.2005.01.002.
  8. Geetha S, Satheesh Kumar KK, Rao CRK, Vijayan M, Trivedi DC. EMI shielding: methods and materials: a review. J Appl Polym Sci., 112, 2073 (2009). https://doi.org/10.1002/app.29812.
  9. Yim YJ, Park SJ. Electromagnetic interference shielding effectiveness of high-density polyethylene composites reinforced with multi-walled carbon nanotubes. J Ind Eng Chem, 21, 155 (2015). https://doi.org/10.1016/j.jiec.2014.04.001.
  10. Yan DX, Pang H, Li B, Vajtai R, Xu L, Ren PG, Wang JH, Li ZM. Structured reduced graphene oxide/polymer composites for ultraefficient electromagnetic interference shielding. Adv Funct Mater, 25, 559 (2015). https://doi.org/10.1002/adfm.201403809.
  11. Thomassin JM, Jérôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng R Rep, 74, 211 (2013). https://doi.org/10.1016/j.mser.2013.06.001.
  12. Mahmoodi M, Arjmand M, Sundararaj U, Park S. The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites. Carbon, 50, 1455 (2012). https://doi.org/10.1016/j.carbon.2011.11.004.
  13. Kim HG, Shin HJ, Kim GC, Park HJ, Moon HJ, Kwac LK. Electromagnetic interference shielding characteristics for orientation angle and number of plies of carbon fiber reinforced plastic. Carbon Lett, 15, 268 (2014). https://doi.org/10.5714/CL.2014.15.4.268.
  14. Li N, Huang Y, Du F, He X, Lin X, Gao D, Ma Y, Li F, Chen Y, Eklund PC. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett, 6, 1141 (2006). https://doi.org/10.1021/nl0602589.
  15. Yim YJ, Seo MK, Kim HY, Park SJ. Electromagnetic interference shielding effectiveness and mechanical properties of MWCNT-reinforced polypropylene nanocomposites. Polymer(Korea), 36, 494 (2012). https://doi.org/10.7317/pk.2012.36.4.494.
  16. Thomassin JM, Vuluga D, Alexandre M, Jerome C, Molenberg I, Huynen I, Detrembleur C. A convenient route for the dispersion of carbon nanotubes in polymers: application to the preparation of electromagnetic interference (EMI) absorbers. Polymer, 53, 169 (2012). https://doi.org/10.1016/j.polymer.2011.11.026.
  17. Lee YS, Yoon KH. Characterization and influence of shear flow on the surface resistivity and mixing condition on the dispersion quality of multi-walled carbon nanotube/polycarbonate nanocomposites. Carbon Lett, 16, 86 (2015). https://doi.org/10.5714/CL.2015.16.2.086.
  18. Kadam A, Pawar M, Yemul O, Thamke V, Kodam K. Biodegradable biobased epoxy resin from karanja oil. Polymer, 72, 82 (2015). https://doi.org/10.1016/j.polymer.2015.07.002.
  19. Chow WS, Tan SG, Ahmad Z, Chia KH, Lau NS, Sudesh K. Biodegradability of epoxidized soybean oil based thermosets in compost soil environment. J Polym Environ, 22, 140 (2014). https://doi.org/10.1007/s10924-013-0615-x.
  20. Seo MK, Park SJ. A kinetic study on the thermal degradation of multi-walled carbon nanotubes-reinforced poly(propylene) composites. Macromol Mater Eng, 289, 368 (2004). https://doi.org/10.1002/mame.200300303.
  21. Lee SO, Choi SH, Kwon SH, Rhee KY, Park SJ. Modification of surface functionality of multi-walled carbon nanotubes on fracture toughness of basalt fiber-reinforced composites. Compos Part B Eng, 79, 47 (2015). https://doi.org/10.1016/j.compositesb.2015.03.077.
  22. Audic JL, Lemiègre L, Corre YM. Thermal and mechanical properties of a polyhydroxyalkanoate plasticized with biobased epoxidized broccoli oil. J Appl Polym Sci, 131, 39983 (2014). https://doi.org/10.1002/app.39983.
  23. Tan SG, Ahmad Z, Chow WS. Interpenetrating polymer network structured thermosets prepared from epoxidized soybean oil/diglycidyl ether of bisphenol A. Polym Int, 63, 273 (2014). https://doi.org/10.1002/pi.4501.
  24. Park SJ, Jin FL, Lee JR. Effect of biodegradable epoxidized castor oil on physicochemical and mechanical properties of epoxy resins. Macromol Chem Phys, 205, 2048 (2004). https://doi.org/10.1002/macp.200400214.
  25. Park SJ, Jin FL, Lee JR. Synthesis and thermal properties of epoxidized vegetable oil. Macromol Rapid Commun, 25, 724 (2004). https://doi.org/10.1002/marc.200300191.
  26. Ritzenthaler S, Court F, Girard-Reydet E, Leibler L, Pascualt JP. ABC triblock copolymers/epoxy-diamine blends: 2. parameters controlling the morphologies and properties. Macromolecules, 36, 118 (2003). https://doi.org/10.1021/ma0211075.
  27. Ma PC, Kim JK, Tang BZ. Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol, 67, 2965 (2007). https://doi.org/10.1016/j.compscitech.2007.05.006.
  28. Griffith AA. The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A, 221, 163 (1921). https://doi.org/10.1098/rsta.1921.0006
  29. Yim YJ, Rhee KY, Park SJ. Influence of electroless nickel-plating on fracture toughness of pitch-based carbon fibre reinforced composites. Compos Part B Eng, 76, 286 (2015). https://doi.org/10.1016/j.compositesb.2015.01.052.
  30. Park SJ, Jeong HJ, Nah C. A study of oxyfluorination of multiwalled carbon nanotubes on mechanical interfacial properties of epoxy matrix nanocomposites. Mater Sci Eng A, 385, 13 (2004). https://doi.org/10.1016/j.msea.2004.03.041.
  31. Huang CY, Pai JF. Optimum conditions of electroless nickel plating on carbon fibres for EMI shielding effectiveness of ENCF/ABS composites. Eur Polym J, 34, 261 (1998). https://doi.org/10.1016/S0014-3057(96)00248-0.
  32. Shim HB, Seo MK, Park SJ. Electromagnetic interference shielding of carbon fibers-reinforced composites. Polymer(Korea), 24, 860 (2000).
  33. Seo MK, Lee JR, Park SJ. Crystallization kinetics and interfacial behaviors of polypropylene composites reinforced with multiwalled carbon nanotubes. Mater Sci Eng A, 404, 79 (2005). https://doi.org/10.1016/j.msea.2005.05.065.
  34. Chauhan SS, Abraham M, Choudhary V. Electromagnetic shielding and mechanical properties of thermally stable poly(ether ketone)/multi-walled carbon nanotube composites prepared using a twinscrew extruder equipped with novel fractional mixing elements. RSC Adv, 6, 113781 (2016). https://doi.org/10.1039/c6ra22969g
  35. Kuester S, Barra GMO, Rerreira JG, Jr, Soares BG, Dmarquette NR. Electromagnetic interference shielding and electrical properties of nanocomposites based on poly (styrene-b-ethylene-ranbutylene-b-styrene) and carbon nanotubes. Eur Polym J, 77, 43 (2016). https://doi.org/10.1016/j.eurpolymj.2016.02.020
  36. Arjmand M, Chizari K, Krause B, Potschke P, Sundararaj U. Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites. Carbon, 98, 358 (2016). https://doi.org/10.1016/j.carbon.2015.11.024.