• Title/Summary/Keyword: EC2

Search Result 3,487, Processing Time 0.037 seconds

Use of Discriminant Analysis to Identify Soil Quality Variation by Land Use (판별분석을 이용한 토지이용별 토양 특성 변화 연구)

  • Ko Kyung-Seok;Kim Jae Gon;Lee Jin-Soo;Kim Tack Hyun;Lee Gyoo Ho;Cho Choon Hee;Oh In Suk;Cheong Young Wook
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.207-219
    • /
    • 2005
  • The physical and chemical characteristics of soils in a small watershed were investigated and the effect of geology and land use on soil quality were examined by using multivariate statistical methods, principal components analysis and discriminant analysis. The soil developed from andesite had finer texture and higher contents of water extractable inorganic components, clay, and mafic minerals than the soil developed from granite. It is considered that the accumulation of salts in the farmland soils indicated by electrical conductivity, contents of cations and anions and pH was caused by fertilizer input during cultivation. The low contents of organic matter in the farmland soils was due to the enhanced oxidation of organic matter by tillage and by the harvest of crops. The contents of inorganic components are increased as following order: upland > orchard > paddy field > forest. The high contents of water soluble $SO_4\;^{2-}$ of paddy soils is due to the oxidation of sulfides mineral formed during the flooding period during the air-dry and extraction. The results of principal components analysis show the difference of soil quality was controlled by geology and land use. PCI indicate the input of fertilizer, mineral weathering and ion exchange reaction by application of nitrogenous fertilizers. The results of two discriminant analyses using water extractable inorganic components and their ratios by land use were also clearly classified by discriminant function 1 and 2. In discriminant analysis by components, discriminant function 1 indicated the effect of fertilizer application and increased as following order: upland > orchard > paddy field > forest soil. The investigated and predicted data for land use from discriminant analysis showed similar results. The discriminant analysis can be used as a useful method certifying the change of land use.

Effect of Phosphorous Acid on Control of Phytophthora Blight of Red Pepper (고추 역병에 대한 아인산 (phosphorous acid)의 방제 효과)

  • Lee, Yong-Se;Ryu, Yeon-Ju;Cho, Jeong-Sang;Lim, Tae-Heon;Chang, Tae-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.180-185
    • /
    • 2001
  • Control effects of phosphorous acid were investigated on Phytophthora blight of red pepper plants in greenhouse and field. In vitro test, the mycelial growth of Phytophthora capsici was inhibited by the phosphorous acid more than 97% at 1,000 ${\mu}g$ and 10,000 ${\mu}g$ a.i./mL in the liquid and solid culture, respectively. At concentration of 10 ${\mu}g$ a.i./mL of phosphorous acid, in the liquid culture the mycelial growth of P. capsici was inhibited 46.2%, however inhibited only 4.9% on the soild culture. Zoosporangial formation was also inhibited 89.1% by phosphorous acid at 100 ${\mu}g$ a.i./mL. Phosphorous acid affected more zoosporangial formation of P. capsici than its mycelial growth. At the concentrations of 10,000, 1,000 and 100 ${\mu}g$ a.i./mL of phosphorous acid, germination of zoosporangia was inhibited 100, 84.3 and 44.2%, respectively. Mycelial growth and zoosporangial formation of P. capsici were little affected at the concentration of 10 ${\mu}g$ a.i./mL of phosphorous acid. Cermination of zoosporangia was also little affected at this concentration, however growth of the germ tubes was inhibited and the abnormal mycelial growth was observed. Phosphorous acid suppressed the incidence of Phytophthora blight of red pepper plants up to $77.0{\sim}62.0%$, in greenhouse. Phosphorous acid suppressed the incidence of Phytophthora blight of red pepper plants up to 54.0% at the conventional culture in field. Treatments of phosphorous acid increased up to 113% in height, 135% in number of fruit, and 129% in weight of fruit.

  • PDF

Operator exposure risk assessment of benzimidazole fungicides on Korean agricultural condition (Benzimidazole계 살균제의 농작업자 위해성평가)

  • Lee, Je-Bong;Shin, Jin-Sup;Jeong, Mi-Hye;Park, Yeon-Ki;Im, Geon-Jae;Kang, Kyu-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.347-353
    • /
    • 2005
  • Pesticide risk assessment for pesticide operators as well as for consumers has become one of the pesticide regulatory tools to reduce any unreasonable adverse health effects from pesticide use. The risk for pesticide operators can be quantified by comparing the acceptable operator exposure level(AOEL) with exposure level during pesticide application. This study is to evaluate the risk of benzimidazole fungicides application worker. The exposure level of pesticide applicators were calculated using Japanese operator exposure study tested with EPN 45% EC. The AOELs for pesticides were obtained dividing relevant lowest no observed abuse effect levels(NOAELs) for the exposure scenario into uncertainty factor, 100. For the non-cancer and cancer occupational risk assessment, $Q_1^*$ produced by US/EPA and life time average daily dose(LADD) calculated from average daily dose(ADD), treatment days per year, worked years for life time were used. Operator exposure for benzimidazole fungicides application were benomyl 0.2, carbendazim 0.36 and thiophanate-methyl 0.42 mg/kg/day. Short-term AOELs for benomyl, carbendazim and thiophanate-methyl were 0.3, 0.1, and 0.2 mg/kg/day, and long-term AOEL were 0.025, 0.025, 0.08 mg/kg/day, respectively. LADDs were benomyl 0.0038, carbendazim 0.0067, thiophanate-methyl 0.0081 mg/kg/day. The ratios of exposure to AOEL were $0.28{\sim}1.5$ for short-term and $3.73{\sim}9.88$ for long-term. Cancer risk for operator were $9.12{\times}10^{-6}$ for benomyl, $1.61{\times}10^{-5}$ for carbendazim and $1.13{\times}10^{-4}$ for thiophanate-methyl by the standard application scenario. The result showed 3 fungicides exceed the risk criteria, $1.0{\times}10^{-6}$. The above risk assessments were based upon conservative assumptions and therefore are believed to be protective of the applicator. To refine the risk at the more actual conditions, further risk assessment with more realistic data would be needed.

Quality Assurance for Intensity Modulated Radiation Therapy (세기조절방사선치료(Intensity Modulated Radiation Therapy; IMRT)의 정도보증(Quality Assurance))

  • Cho Byung Chul;Park Suk Won;Oh Do Hoon;Bae Hoonsik
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.275-286
    • /
    • 2001
  • Purpose : To setup procedures of quality assurance (OA) for implementing intensity modulated radiation therapy (IMRT) clinically, report OA procedures peformed for one patient with prostate cancer. Materials and methods : $P^3IMRT$ (ADAC) and linear accelerator (Siemens) with multileaf collimator are used to implement IMRT. At first, the positional accuracy, reproducibility of MLC, and leaf transmission factor were evaluated. RTP commissioning was peformed again to consider small field effect. After RTP recommissioning, a test plan of a C-shaped PTV was made using 9 intensity modulated beams, and the calculated isocenter dose was compared with the measured one in solid water phantom. As a patient-specific IMRT QA, one patient with prostate cancer was planned using 6 beams of total 74 segmented fields. The same beams were used to recalculate dose in a solid water phantom. Dose of these beams were measured with a 0.015 cc micro-ionization chamber, a diode detector, films, and an array detector and compared with calculated one. Results : The positioning accuracy of MLC was about 1 mm, and the reproducibility was around 0.5 mm. For leaf transmission factor for 10 MV photon beams, interleaf leakage was measured $1.9\%$ and midleaf leakage $0.9\%$ relative to $10\times\;cm^2$ open filed. Penumbra measured with film, diode detector, microionization chamber, and conventional 0.125 cc chamber showed that $80\~20\%$ penumbra width measured with a 0.125 cc chamber was 2 mm larger than that of film, which means a 0.125 cc ionization chamber was unacceptable for measuring small field such like 0.5 cm beamlet. After RTP recommissioning, the discrepancy between the measured and calculated dose profile for a small field of $1\times1\;cm^2$ size was less than $2\%$. The isocenter dose of the test plan of C-shaped PTV was measured two times with micro-ionization chamber in solid phantom showed that the errors upto $12\%$ for individual beam, but total dose delivered were agreed with the calculated within $2\%$. The transverse dose distribution measured with EC-L film was agreed with the calculated one in general. The isocenter dose for the patient measured in solid phantom was agreed within $1.5\%$. On-axis dose profiles of each individual beam at the position of the central leaf measured with film and array detector were found that at out-of-the-field region, the calculated dose underestimates about $2\%$, at inside-the-field the measured one was agreed within $3\%$, except some position. Conclusion : It is necessary more tight quality control of MLC for IMRT relative to conventional large field treatment and to develop QA procedures to check intensity pattern more efficiently. At the conclusion, we did setup an appropriate QA procedures for IMRT by a series of verifications including the measurement of absolute dose at the isocenter with a micro-ionization chamber, film dosimetry for verifying intensity pattern, and another measurement with an array detector for comparing off-axis dose profile.

  • PDF

Effect of Na+ ion on Changes in Hydraulic Conductivity and Chemical Properties of Effluent of Reclaimed Sandy Soil Column (토양중 Na+ 이온이 간척지 토주의 수리전도도와 용출수의 화학성 변화에 미치는 영향)

  • Ryu, Jin-Hee;Chung, Doug-Young;Yang, Chang-Hyu;Lee, Sang-Bok;Choi, Weon-Young;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.454-459
    • /
    • 2009
  • In order to identify the effect of soil salinity on saturated hydraulic conductivity in reclaimed paddy soils, we established the soil columns uniformly packed with soils collected at every 20 cm up to 60 cm from the reclaimed paddy area with high and low salinity which has been cultivated rice plants for the last 30 years. The soil textures were sandy loam and loamy sand for high-salinity and low-salinity topsoils, respectively. For high-salinity and low-salinity soils the ECes were ranged from 25.2 to $37.8dS\;m^{-1}$ and 3.0 to $3.4dS\;m^{-1}$ while the ESPs were ranged from 7.70 to 20.84 % and from 5.12 to 11.33 %, respectively. The bulk densities of the soil columns were adjusted to $1.15{\pm}0.03g\;cm^{-3}$. The results of the soil column experiments shows that the stabilized saturated hydraulic conductivity of low-salinity soil was $0.62cm\;hr^{-1}$ at the topsoil while there were little water flow at the bottom of the soil columns packed with high-salinity soils. After removal of $Na^+$ ions with $1N\;NH_4OAc$ from the high-salinity soil, Ksat of the saline soil was drastically increased to $0.23cm\;hr^{-1}$. Soil columns of high-salinity topsoil treated with four different concentration of NaCl influent after removal of soluble and exchangeable cations with $1N\;NH_4OAc$ show Ksat in the range of $0.1{\sim}0.15cm\;hr^{-1}$ and the Ksat slightly decreased as the concentration of NaCl influent was increasing. Conclusively, we could assume that $Na^+$ can be significantly contributed to the saturated hydraulic conductivity in newly reclaimed sandy soil.

Effect of Light-Quality Control on Growth of Ledebouriella seseloides Grown in Plant Factory of an Artificial Light Type (인공광 식물공장내 광질 제어가 방풍나물 생장에 미치는 영향)

  • Heo, Jeong-Wook;Kim, Dong-Eok;Han, Kil-Su;Kim, Sook-Jong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.193-200
    • /
    • 2013
  • BACKGROUND: Plant factory system of an artificial light type using Light-Emitting Diodes (LEDs), fluorescent light, or metal halide lamp instead of sun light is an ultimated method for plant production without any pesticides regardless of seasonal changes. The plant factory is also completely isolated from outside environmental conditions such as a light, temperature, or humidity compared to conventional greenhouse. Light-environment control such as a quality or quantity in the plant factory system is essential for improving the growth and development of plant species. However, there was little report that the effects of various light qualities provided by LEDs on Ledebouriella seseloides growth under the plant factory system. METHODS AND RESULTS: Ledebouriella seseloides seedlings transplanted at urethane sponge were grown in the plant factory system of a horizontal type with LED artificial lights for 90 days. Yamazaki solution for hydroponic culture of the seedlings was regularly irrigated by the deep flow technique (DFT) system on the culture gutters. Electrical Conductivity (EC) and pH of the solution was recorded at 1.4 ds/m and 5.8 in average, respectively during the experimental period. Number of unfolded leaves, leaf length, shoot fresh and dry weight of the seedlings were three times measured in every 30 days after beginning of the experiment. Blue LEDs, red LEDs, and fluorescent lights inside the plant factory were used as light sources. Conventional fluorescent lamps were considered as a control. In all the treatment, light intensity was maintained at $100{\mu}mol/m^2/s$ on the culture bed. Fresh weight of the seedlings was 3.7 times greater in the treatment with the mixture radiation of fluorescent light and blue+red LEDs (1:3 in energy ratio; Treatment FLBR13) than in fluorescent light treatment (Treatment FL). In FLBR13 treatment, dry weight per seedling was two times greater than in FL or BR11 treatment of blue+red LEDs (1:3 in energy ratio; Treatment BR11) during the culture period. Increasing in number of unfolded leaves was also significantly affected by the FLBR13 treatment comparing with BR11 treatment. CONCLUSION(S): Hydroponic culture of Ledebouriella seseloides seedlings was successfully achieved in the plant factory system with mixture lights of blue, red LEDs and fluorescent lights. Shoot growth of the seedlings was significantly promoted by the FLBR13 with the mixture radiation of fluorescent light, blue, and red LEDs under 1:3 mixture ratio of blue and red LEDs during the experimental period compared to conventional light conditions.

Effects of Farming on Soil Contamination and Water Quality in Keum River Districts (금강유역 농업지대의 토양 및 수질오염)

  • Han, Kang-Wan;Cho, Jae-Young;Kim, Seong-Jo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.19-24
    • /
    • 1997
  • This studies was carried out to investigate the soil contamination and water quality affected by agricultural activities in the Keum river Districts. Soil pH of the Keum river districts were $5.56{\sim}7.09$ in Keum river headwater and Namdae-cheon but that of Keumgang-lake were $5.07{\sim}7.21$ because of the cattle shed and industrial complex around. Total nitrogen contents of soils were found difference as period of fertilizer application. Total phosphorous content of soils no difference were found between the headwater and Keumgang-lake. Heavy metal contents of soils were natural background level. Water pH of the Keum river districts ranged from 6.59 to 7.80 and COD was maintain below 1.0 mg/L. Total nitrogen content affected by a livestock wastes and sewage water were the higher than that of others and total phosphorous content showed below 0.5 mg/L. Nitrate nitrogen and ortho-phosphate contents were very high according to the influence a livestock waste and sewage water in headwater region of the Keum river partly. Chlorine and sulfate contents were high according to the influence of sea water invasion. Heavy metal contents of waters were natural background level.

  • PDF

Scheduling Non-drainage Irrigation in Coir Substrate Hydroponics with Different Percentages of Chips and Dust for Tomato Cultivation using a Frequency Domain Reflectometry Sensor (토마토 수경재배에서 FDR(Frequency Domain Reflectometry) 센서를 활용한 무배액 시스템에 적합한 코이어 배지의 Chip과 Dust 비율 구명)

  • Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • This study examined an automated irrigation technique by a frequency domain reflectometry (FDR) sensor for scheduling irrigation for tomato (Solanum lycopersicum L. 'Starbuck F1') cultivation aimed at avoiding effluent from an open hydroponic system with coir substrate containing different ratios of chip-to-dust (v/v) content. Specifically, the objectives were to undertake preliminary measurements of irrigation volumes, leachate volume, volumetric water content and electrical conductivity (EC) in the substrate, plant growth, fruit yield, and water use efficiency resulting from variation in chip content as an initial experiment. Commercial coir substrates containing different percentages of chips and dust (0 and 100%, 30 and 70%, 50 and 50%, or 70 and 30%), two-story coir substrates with different percentages of chips in the lower layer and dust in the upper layer (15 and 85%, 25 and 75%, or 35 and 65%), or rockwool slabs were used. The results showed that a negligible or no leachate was found for all treatments when plants were grown under a technique for scheduling non-drainage irrigation using a frequency domain reflectometry (FDR) sensor. Daily irrigation volume was affected by chip content in both commercial and two-story slabs. The highest plant growth, marketable fruit weight, and water-use efficiency were observed in the plants grown in the commercial coir slab containing 0% chips and 100% dust, indicating that the FDR sensor-auto-mated irrigation may be more useful for tomato cultivation in coir substrate containing 0% chips and 100% dust using water efficiently and minimizing or avoiding leachate and thus increasing yield and reducing pollution. Detailed experiment is necessary to closely focus on determining appropriate irrigation volume at each of irrigation as well as duration of each individual irrigation cycle depending on different physical properties of substrates using an automated irrigation system operated by the FDR sensor.

Effect of Fly Ash Fertilizer on Paddy Soil Quality and Rice Growth (비산재로 제조한 비료가 논토양 질과 벼 생육에 미치는 영향)

  • Oh, Se Jin;Yun, Hyun Soo;Oh, Seung Min;Kim, Sung Chul;Kim, Rog Young;Seo, Yung Ho;Lee, Kee Suk;Ok, Yong Sik;Yang, Jae E.
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.229-234
    • /
    • 2013
  • Coal ash can be added to agricultural soils to increase the chemical properties of soil such as pH, cation exchange capacity and nutrient availability of - B, Ca, Mo etc-. Therefore, the main purpose of this study was to evaluate the feasibility of fly ash as a soil amendment in paddy soils. Selected fly ash was mixed with bentonite and calcium hydroxide at the ratio of 80:15:5 (w/w) and manufactured as a pellet type at the size of 10 mm. Field experiments were conducted to evaluate the effects of fly ash fertilizer on the soil quality and crop growth compare to the control (no fertilizer) and, - traditional fertilizer. Results showed that soil pH and organic matter in paddy soils after applying the manufactured fly ash fertilizer were not increased compared to the other two treatments. However, the concentration of available phosphate and silicate in paddy soils were higher than those of the control and traditional fertilization. With regard to crop growth, no significant difference was observed between three different treatments. However, the content of protein in the rice grain cultivated with the fly ash fertilizer was higher than in the rice cultivated by other two treatments. Overall, fly ash fertilizer could increase the concentration of available silicate and phosphate in the paddy soil and improve the rice quality. In conclusion, fly ash can be utilized in agricultural soils as soil amendment, especially in the rice paddy soil.

Protective effect of Acer okamotoanum from oxidative stress in C6 glial cells (우산고로쇠의 항산화 및 신경세포에서의 산화적 스트레스 개선 효과)

  • Choi, Soo Yeon;Kim, Ji Hyun;Lee, Jaemin;Lee, Sanghyun;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • Radical scavenging effect and protective activity against oxidative stress of Acer okamotoanum were investigated. A. okamotoanum was extracted with methanol (MeOH) and then fractionated with n-BuOH, ethyl acetate (EtOAc), methylene chloride and n-hexane fractions. The MeOH extract and fractions showed strong 1,1-diphenyl-2-picrylhydrazyl and superoxide radical scavenging activity. Among the MeOH extract and fractions, the EtOAc fraction showed the strongest radical scavenging activity. In addition, total phenolic and flavonoid contents of EtOAc fraction was higher than other extract and fractions. Furthermore, we investigated the neuroprotective effect of the MeOH extract and fractions from A. okamotoanum against oxidative stress under cellular system using C6 glial cell. The C6 glial cells showed a decrease in cell viability and high production of reactive oxygen species (ROS) by the treatment of amyloid $beta_{25-35}$ ($A{\beta}_{25-35}$). However, with the treatment of the MeOH extract and fractions, it significantly increased the cell viability and inhibited the overproduction of ROS by $A{\beta}_{25-35}$. In particular, the EtOAc fraction led to significantly increase the cell viability and decrease the generation of ROS against oxidative stress by $A{\beta}_{25-35}$. The current study indicated that A. okamotoanum demonstrated antioxidative and neuroprotective effects. In particular, the EtOAc fraction which attributed a strong protective activity against oxidative stress.