DOI QR코드

DOI QR Code

Protective effect of Acer okamotoanum from oxidative stress in C6 glial cells

우산고로쇠의 항산화 및 신경세포에서의 산화적 스트레스 개선 효과

  • Choi, Soo Yeon (Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University) ;
  • Kim, Ji Hyun (Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University) ;
  • Lee, Jaemin (Department of Integrative Plant Science, Chung-Ang University) ;
  • Lee, Sanghyun (Department of Integrative Plant Science, Chung-Ang University) ;
  • Cho, Eun Ju (Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University)
  • Received : 2017.02.27
  • Accepted : 2017.05.15
  • Published : 2017.06.30

Abstract

Radical scavenging effect and protective activity against oxidative stress of Acer okamotoanum were investigated. A. okamotoanum was extracted with methanol (MeOH) and then fractionated with n-BuOH, ethyl acetate (EtOAc), methylene chloride and n-hexane fractions. The MeOH extract and fractions showed strong 1,1-diphenyl-2-picrylhydrazyl and superoxide radical scavenging activity. Among the MeOH extract and fractions, the EtOAc fraction showed the strongest radical scavenging activity. In addition, total phenolic and flavonoid contents of EtOAc fraction was higher than other extract and fractions. Furthermore, we investigated the neuroprotective effect of the MeOH extract and fractions from A. okamotoanum against oxidative stress under cellular system using C6 glial cell. The C6 glial cells showed a decrease in cell viability and high production of reactive oxygen species (ROS) by the treatment of amyloid $beta_{25-35}$ ($A{\beta}_{25-35}$). However, with the treatment of the MeOH extract and fractions, it significantly increased the cell viability and inhibited the overproduction of ROS by $A{\beta}_{25-35}$. In particular, the EtOAc fraction led to significantly increase the cell viability and decrease the generation of ROS against oxidative stress by $A{\beta}_{25-35}$. The current study indicated that A. okamotoanum demonstrated antioxidative and neuroprotective effects. In particular, the EtOAc fraction which attributed a strong protective activity against oxidative stress.

본 연구에서는 우산고로쇠(Acer okamotoaum) methanol (MeOH) 추출물과 n-BuOH, ethyl acetate (EtOAc), methylene chloride 및 n-hexane의 4종 분획물을 이용하여 free radical 소거능과 총 페놀, 플라보노이드 함량을 통한 항산화 효과를 측정하였으며, 신경교세포인 C6 glial cell을 이용하여 amyloid $beta_{25-35}$ ($A{\beta}_{25-35}$)에 의해 유도된 산화적 스트레스에서 신경세포 보호 효과에 대해 알아보았다. 그 결과 우산고로쇠 MeOH 추출물과 4가지 유기용매 추출 분획물은 우수한 1,1-diphenyl-2-picrylhydrazyl radical 소거능을 나타내었으며, 특히 EtOAc 분획물은 $4.47{\mu}g/mL$$EC_{50}$ 값을 나타내 가장 우수한 소거능을 가지고 있음을 확인할 수 있었다. Superoxide radical 소거능에서도 MeOH 추출물과 분획물은 높은 소거능을 보였으며, EtOAc 분획물은 $100{\mu}g/mL$ 농도에서 84.60%로 가장 높은 소거능을 나타내었다. 총 페놀과 플라보노이드 함량에서도 EtOAc 분획물은 다른 추출물과 분획물에 비해 월등히 높은 함량을 가지는 것으로 확인 되었다. 또한 $A{\beta}_{25-35}$에 의해 유발된 산화적 스트레스에서 우산고로쇠 MeOH 추출물과 4가지 유기용매 추출 분획물은 세포 생존율을 증가시켰으며, reactive oxygen species 생성을 감소 시키는 것으로 확인되었고 EtOAc 분획물이 가장 뛰어난 효과를 나타내었다. 본 연구 결과를 통해 우산고로쇠 MeOH 추출물과 4가지 유기용매 추출 분획물, 특히 EtOAc 분획물은 우수한 항산화 효과와 산화적 스트레스의 개선 효과를 가져 신경세포 보호에 효과가 있는 것으로 확인되었다.

Keywords

References

  1. An BS, Kang JH, Yang H, Yang MP, Jeung EB (2013) Effects of Acer okamotoanum sap on the function of polymorphonuclear neutrophilic leukocytes in vitro and in vivo. Mol Med Rep 7: 654-658 https://doi.org/10.3892/mmr.2012.1190
  2. Aniya Y, Naito A (1993) Oxidative stress-induced activation of microsomal glutathione S-transferase in isolated rat liver. Biochem Pharmacol 45: 37-42 https://doi.org/10.1016/0006-2952(93)90374-6
  3. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120: 483-495 https://doi.org/10.1016/j.cell.2005.02.001
  4. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78: 547-581 https://doi.org/10.1152/physrev.1998.78.2.547
  5. Behl C (1999) Alzheimer's disease and oxidative stress: implications for novel therapeutic approaches. Prog Neurobiol 57: 301-323 https://doi.org/10.1016/S0301-0082(98)00055-0
  6. Choi CH, Song ES, Kim JS, Kang MH (2003) Antioxidative activities of Castanea crenata Flos. methanol extracts. Korean J Food Sci Technol 35: 1216-1220
  7. Chung JH, Jeon IS (2011) Antioxidative activities of methanol extracts from different parts of Chrysanthemum zawadskii. J Food Pre 18: 739-745
  8. Duthie G, Crozier A (2000) Plant-derived phenolic antioxidants. Curr Opin Clin Nutr Metab Care 3: 447-451 https://doi.org/10.1097/00075197-200011000-00006
  9. Ferreres F, Gomes D, Valentao P, Goncalves R, Pio R, Chagas EA, Seabra RM, Andrade PB (2009) Improved loquat (Eriobotrya japonica Lindl.) cultivars: variation of phenolics and antioxidative potential. Food Chem 114: 1019-1027 https://doi.org/10.1016/j.foodchem.2008.10.065
  10. Fridovich I (1989) Superoxide dismutase an adaption to paramagneticgas. J Biol Chem 264: 7761-7762
  11. Gorinstein S, Medina Vargas OJ, Jaramillo NO, Salas LA, Ayala ALM, Arancibia-Avila P (2007) The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. Eur Food Res Technol 225: 321-328 https://doi.org/10.1007/s00217-006-0417-7
  12. Halliwell B, Gutteridge JMC (1999) Free Radicals in Biology and Medicine, 3rd ed., Oxford University Press, New York
  13. Hashi M, Takeshita T (1973) Hypocholesterolemic effect of wood hemicelluloses on cholesterol-fed rats. Jap Wood Res Soc J 19: 101-103
  14. Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshida T, Okuda T (1989) Effects of the interaction of tannins with co-existing substances: Effects of tannins and VI related poly phenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem Pharm Bull 37: 2016-2021 https://doi.org/10.1248/cpb.37.2016
  15. Hetog MGL, Hollman PCH, Van de Putte B (1993) Content of potentially anticarcinogenic flavonoids of tea infusions, wines and fruit juice. J Agr Food Chem 41: 1242-1246 https://doi.org/10.1021/jf00032a015
  16. Jang CH, Jung MW, Jung IM (2001) Enzymes for beta amyloid generation and their therapeutic applications for Alzheimer's disease. KBRI 1: 45-52
  17. Jeong MH, Kim SS, Ha JH, Jin L, Lee HJ, Kang HY, Park SJ, Lee HY (2009) Enhancement of anticancer activity of Acer mono by high pressure extraction process. J Korean Soc Food Sci Nutr 38: 1243-1252 https://doi.org/10.3746/jkfn.2009.38.9.1243
  18. Jeong MH, Kim SS, Kim JS, Lee HJ, Chio GP, Lee HY (2010) Skim whitening and skin immune activities of different parts of Acer mono and Acer okamotoanum. J Korean For Soc 99: 470-478
  19. Jin L, Han JG, Ha JH, Jeong HS, Kwon MC, Jeong MH, Lee HJ, Kang HY, Choi DH, Lee HY (2008) Comparison of antioxidant and glutathione Stransferase activities of extracts from Acer mono and A. okamotoanum. Korean J Medicinal Crop Sci 16:427-433
  20. Jin WY, Thuong PT, Su ND, Min BS, Son KH, Sok DE, Bae KH (2007) Antioxidant activity of cleomiscosins A and C isolated from Acer okamotoanum. Arch Pharm Res 30: 275-281 https://doi.org/10.1007/BF02977606
  21. Kim EJ, Choi JY, Yu M, Kim MY, Lee S, Lee BH (2012) Total polyphenols, total flavonoid contents, and antioxidant activity of Korean natural and medicinal plants. Korean J Food Sci Thechnol 44: 337-342 https://doi.org/10.9721/KJFST.2012.44.3.337
  22. Kim HJ, Woo ER, Shin CG, Park H (1998) A New Flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency Virus-1 (HIV-1) Integrase. J Nat Prod 61: 145-148 https://doi.org/10.1021/np970171q
  23. Kim NM, Lee JW, Do JH, Park CK, Yang JW (2005) Effects of the fermentation periods on the qualities and functionality of the vegetable fermented broth. Korean J Med Crop Sci 13: 293-299
  24. Knott AB, Perkins G, Schwarzendacher R, Bossy-Wetzell E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9: 505-518 https://doi.org/10.1038/nrn2417
  25. Ma WW, Hou CC, Zhou X, Yu HL, Xi YD, Ding J, Zhao X, Xiao R (2013) Genistein alleviates the mitochondria-targeted DNA damage induced by ${\beta}$-amyloid $peptides_{25-35}$ in C6 glioma cells. Neurochem Res 38: 1315-1323 https://doi.org/10.1007/s11064-013-1019-y
  26. Marinova D, Ribarova F, Atanassova M (2005) Total phenolics and total flavonoids in bulgarian fruits and vegetables. UCTM 40: 255-260
  27. Mattson MP, Partin J, Begley JG (1988) Amyloid beta peptide induces apoptosis-related events in synapses and dendrites. Brain Res 807: 167-176
  28. Mosmann T (1983) Rapid colormetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 65: 55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  29. Muthaiyah B, Essa MM, Chauhan V, Chauhan A (2011) Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. Neurochem Res 36: 2096-2103 https://doi.org/10.1007/s11064-011-0533-z
  30. Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46: 849-854 https://doi.org/10.1016/S0006-291X(72)80218-3
  31. Qadir SA, Kim CH, Kwon MC, Lee HJ, Kang HY, Choi DH, Lee HY (2007) Comparison of Anticancer and immuno-modulatory activities in the different parts of the Acer mono Max. and Acer okamotoanum. Korean J Medicinal Crop Sci 15: 405-410
  32. Reynolds A, Lauriea C, Mosleya LR, Gendelmana EH (2007) Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol 82: 297-325
  33. Rike CJ, Ramezan-Arab N, Cotman CW (1997) ${\beta}$-Amyloid neurotoxicity in vitro: evidence of oxidative stress but not protection by antioxidants. J Neurochem 69: 1601-1611 https://doi.org/10.1046/j.1471-4159.1997.69041601.x
  34. Selkoe DJ (1996) Amyloid ${\beta}$ protein and the gentics of Alzheimer's disease. J Biol Chem 271: 18295-18298 https://doi.org/10.1074/jbc.271.31.18295
  35. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell B 39: 44-84 https://doi.org/10.1016/j.biocel.2006.07.001
  36. Yang H, Hwang I, Koo TH, Ahn HJ, Kim S, Park MJ, Choi WS, Kang HY, Choi IG, Choi KC, Jeung EB (2012) Beneficial effects of Acer okamotoanum sap on L-NAME-induced hypertension-like symptoms in a rat model. Mol Med Rep 5: 427-431
  37. Yankner BA (1996) Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 16: 921-932 https://doi.org/10.1016/S0896-6273(00)80115-4

Cited by

  1. Acer okamotoanum protects SH-SY5Y neuronal cells against hydrogen peroxide-induced oxidative stress pp.2092-6456, 2019, https://doi.org/10.1007/s10068-018-0381-6
  2. Acer okamotoanum Inhibit the Hydrogen Peroxide-Induced Oxidative Stress in C6 Glial Cells vol.24, pp.3, 2017, https://doi.org/10.20307/nps.2018.24.3.148
  3. The Protective Effects of Acer okamotoanum and Isoquercitrin on Obesity and Amyloidosis in a Mouse Model vol.12, pp.5, 2020, https://doi.org/10.3390/nu12051353
  4. 만성 역류성 식도염 모델에서 빈랑(檳榔)와 황련(黃連) 복합물의 보호 효과 vol.42, pp.1, 2017, https://doi.org/10.22246/jikm.2021.42.1.11
  5. A Study on the Tyrosinase Inhibitory and Antioxidant Effect of Microalgae Extracts vol.49, pp.2, 2017, https://doi.org/10.48022/mbl.2012.12001