Use of Discriminant Analysis to Identify Soil Quality Variation by Land Use

판별분석을 이용한 토지이용별 토양 특성 변화 연구

  • Ko Kyung-Seok (Geological & Environmental Hazards Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Kim Jae Gon (Geological & Environmental Hazards Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Lee Jin-Soo (Geological & Environmental Hazards Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Kim Tack Hyun (Geological & Environmental Hazards Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Lee Gyoo Ho (Geological & Environmental Hazards Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Cho Choon Hee (Geological & Environmental Hazards Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Oh In Suk (Geological & Environmental Hazards Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Cheong Young Wook (Geological & Environmental Hazards Division, Korea Institute of Geoscience & Mineral Resources)
  • 고경석 (한국지질자원연구원 지질환경재해연구부) ;
  • 김재곤 (한국지질자원연구원 지질환경재해연구부) ;
  • 이진수 (한국지질자원연구원 지질환경재해연구부) ;
  • 김탁현 (한국지질자원연구원 지질환경재해연구부) ;
  • 이규호 (한국지질자원연구원 지질환경재해연구부) ;
  • 조춘희 (한국지질자원연구원 지질환경재해연구부) ;
  • 오인숙 (한국지질자원연구원 지질환경재해연구부) ;
  • 정영욱 (한국지질자원연구원 지질환경재해연구부)
  • Published : 2005.06.01

Abstract

The physical and chemical characteristics of soils in a small watershed were investigated and the effect of geology and land use on soil quality were examined by using multivariate statistical methods, principal components analysis and discriminant analysis. The soil developed from andesite had finer texture and higher contents of water extractable inorganic components, clay, and mafic minerals than the soil developed from granite. It is considered that the accumulation of salts in the farmland soils indicated by electrical conductivity, contents of cations and anions and pH was caused by fertilizer input during cultivation. The low contents of organic matter in the farmland soils was due to the enhanced oxidation of organic matter by tillage and by the harvest of crops. The contents of inorganic components are increased as following order: upland > orchard > paddy field > forest. The high contents of water soluble $SO_4\;^{2-}$ of paddy soils is due to the oxidation of sulfides mineral formed during the flooding period during the air-dry and extraction. The results of principal components analysis show the difference of soil quality was controlled by geology and land use. PCI indicate the input of fertilizer, mineral weathering and ion exchange reaction by application of nitrogenous fertilizers. The results of two discriminant analyses using water extractable inorganic components and their ratios by land use were also clearly classified by discriminant function 1 and 2. In discriminant analysis by components, discriminant function 1 indicated the effect of fertilizer application and increased as following order: upland > orchard > paddy field > forest soil. The investigated and predicted data for land use from discriminant analysis showed similar results. The discriminant analysis can be used as a useful method certifying the change of land use.

본 연구에서는 회동저수지 상류 수영강 유역에 발달된 토양을 대상으로 지질 및 토지이용별로 토양의 물리화학적 특성을 조사하고 그 영향을 다변량 통계분석법인 주성분 및 판별분석을 이용하여 고찰하였다. 연구지역내 토양의 토성은 안산암에서 발달한 토양이 화강암의 것보다 세립질이며 용출 무기성분, 점토 및 유색광물의 함량도 높았다. 경작지 토양 내 염류 집적(EC, 양이온, 음이온)과 pH증가는 대부분 경작과정에 투입된 비료의 영향에 의한 것이며 임야 토양에 비해 상대적으로 낮은 유기물 농도는 경운에 의한 유기물의 산화 촉진 및 작물 수확에 기인하는 것이다. 토지이용별 무기성분의 함량은 밭>과수원>논>임야 토양 순으로 나타났으며, 논 토양의 높은 $SO_4\;^{2-}$함량은 담수 상태 환원조건하 침전된 황화광물형태가 산화조건의 용출 실험에 의해 용해되어 증가되는 것에 기인한다. 주성분 분석결과는 토지 이용이나 지질에 따른 토양 특성을 잘 나타내었으며, 주성분 1은 시비, 광물 풍화작용 및 질소질 비료에 의한 이온교환 반응의 영향을 나타내었다. 토양 용출 성분과 성분비를 이용한 두 종류의 판별분석결과는 모두 토지이용별로 판별함수 1과 2에 의해 뚜렷하게 구분되며, 토양 성분을 이용한 판별분석에서 판별함수 1은 경작에 의한 비료의 영향을 나타내며 밭, 과수원, 논, 임야 토양 순서로 증가하였다. 판별분석에 의한 토지이용 특성의 조사 및 예측자료는 비교적 잘 일치하였으며 토지 이용의 변화를 확인할 수 있는 방법으로도 사용될 수 있었다.

Keywords

References

  1. 김연태, 우남칠 (2003) 축사가 밀집된 농촌지역 천부지하수의 질산염 오염특성. 한국지하수토양환경학회지, 8권, p.55-67
  2. 김의선, 황진연, 김진섭, 함세영, 김재곤 (2001) 부산 북부 지역의 모암유형에 따른 토양의 구성광물 및 화학성분, 한국광물학회지, 14권, p. 58-72
  3. 안재환 (2001) 비점오염원 유출부하 및 기여율. 건설기술정보, p. 34-38
  4. 임동규, 강항원, 정연태, 박경배, 박무언 (1997) 밀양 봉황천 수계지역의 토지이용현황과 토양특성. 한국토양비료학회지, 30권, p. 280-287
  5. Appelo, C.A.J. and Postma, D. (1993) Geochemistry, groundwater and pollution. A.A. Balkema, Reotterdam, Netherlands, 536p
  6. Brye, K.R., Andraski, T.W., Jarrell, W.M., Bundy, L.G., and Norman, J.M. (2002) Phosphorous leaching under a restored tallgrass prairie and corn agroecosystems. J. Environ. Qual., v. 31, p. 769-781 https://doi.org/10.2134/jeq2002.0769
  7. Cao, Z.H., Huang, J.F., Zhang, C.S. and Li, A.F. (2004) Soil quality evolution after land use change from paddy soil to vegetable land. Environ. Geochem. Health, v. 26, p. 97-103 https://doi.org/10.1023/B:EGAH.0000039572.11564.27
  8. Davis, J.C. (1986) Statistical and data analysis in geology. Wiley, New York, 646p
  9. Emmerling, C. and Udelhoven, T. (2002) Discriminating factors of the spatial variability of soil quality parameters at landscape-scale. J. Plant Nutr. Soil Sci., v. 165, p. 706-712 https://doi.org/10.1002/jpln.200290007
  10. Gimenez, E. (1994) Caracterizacion hidrogeoquimica de los procesos de salinizacion del acuifero detritico costero de la Plana de Castellon. Tesis Doctoral, Universidad de Granada, p.390 (in Spanish)
  11. Kim, J.G., Kim, T.H., Lee, J.-S., Ko, K.-S., Lee, G.H., Chon, C.-M., Cho, C.H. and Cheong, Y.W. (2005) Characteristics and phosphorous accumulation of surface soil in relation with geology and land use. Soil Sci. Plant Nutr., submitted
  12. Lambrakis, N., Antonakos, A. and Panagopoulos, G. (2004) The use of multicomponent statistical analysis in hydrogeological environmental research. Water Res., v. 38, p. 1862-1872 https://doi.org/10.1016/j.watres.2004.01.009
  13. Maguire, R.O. and Sims, J.T. (2002) Soil testing to predict phosphorus leaching, J. Environ. Qual., v. 31, p. 1601-1609 https://doi.org/10.2134/jeq2002.1601
  14. NIAST (2000) Taxonomical classification of Korean soils. National Institute of Agricultural Science, 809p
  15. Olsen, S.R. and Sommers, L.E. (1982) Phosphorous. In Page, A.L. et al.(ed) Methods for soil analysis: Part 2 Chemical and microbiological properties. 2nd (ed.), ASA and SSSA, Madison, Wisconsin, p. 403-430
  16. Schroeder, P.D., Radcliffe, D.E., Cabrera, M.L. and Belwe, C.D. (2004) Relationship between soil test phosphorus and phosphorus in runoff: Effects of soil series variability, J. Environ. Qual., v. 33, p. 1452-1463 https://doi.org/10.2134/jeq2004.1452
  17. Splechtna, B.E. and Klinka, K. (2001) Quantitative characterization of nutrient regimes of high-elevation forest soils in the southern coastal region of British Columbia, Canada. Geoderma, v. 102, p. 153-174 https://doi.org/10.1016/S0016-7061(00)00109-9
  18. Spruill, T.B., Showers, W.J. and Howe, S.S. (2002) Application of classification-tree methods to identify nitrate sources in ground water. J. Environ. Qual., v. 31, p.1538-1549 https://doi.org/10.2134/jeq2002.1538
  19. Stezenbach, K.J., Farnham, I.M., Hodge, V.F. and Johannesson, K.H. (1999) Using multivariate statistical analysis of groundwater major cation and trace element concentration to evaluate groundwater flow in a regional aquifer. Hydrol. Process., v. 13, p. 2655-2673
  20. Sun, B., Zhou, S. and Zhao, Q. (2003) Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, v. 115, p. 85-99 https://doi.org/10.1016/S0016-7061(03)00078-8
  21. Velasquez, E., Lavelle, P., Barrios, E., Joffre, R. and Reversat, F. (2005) Evaluating soil quality in tropical agroecosystems of Colombia using NIRS. Soil Biol. Biochem., in press
  22. Wilson, D.I. (2002) Derivation of the chalk superficial deposits of the North Downs, England: an application of discriminant analysis. Geomorphology, v. 42, p. 343-364 https://doi.org/10.1016/S0169-555X(01)00095-2