• Title/Summary/Keyword: Dynamic weigh

Search Result 31, Processing Time 0.021 seconds

A Study on Weight Estimation of Moving Vehicles using Bridge Weigh-in-Motion Technique (Bridge Weigh-in-Motion 기법을 이용한 주행차량 중량추정에 관한 연구)

  • Oh, Jun-Seok;Park, Jooyoung;Kim, Junkyeong;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • In this study, the estimation of axial load and total axial load was conducted using Bridge Weigh-in-Motion(BWIM) technique which generally consists of devices for measuring the strain induced in the bridge by the vehicles. axle detectors for collecting information on vehicle velocity and axle spacing. and data acquisition equipment. Vehicle driving test for the development of the BWIM system is necessary but it needs much cost and time. In addition, it demands various driving conditions for the test. Thus, we need a numerical-simulation method for resolving the cost and time problems of vehicle driving tests, and a way of measuring bridge response according to various driving conditions. Using a bridge model reflecting the dynamic characteristic contributes to increased accuracy in numerical simulation. In this paper, we conduct a numerical simulation which reflects the dynamic characteristic of a bridge using the Bridge Weigh-in-Motion technique, and suggest overload vehicle enforcement technology.

Confidence bevels of Measured Axle Load with a Consideration of Dynamic Loading (동적 부하를 고려한 계측 축중의 신뢰 범위)

  • 조일수;김성욱;이주형;박종연;이동훈;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.303-303
    • /
    • 2000
  • It is difficult to determine the static axle weight of a vehicle with weigh-in-motion systems which in absence measure instantaneous axle impact forces. The difficulty in determining a static axle weight results from dynamic effects induced by vehicle/road interactions. One method to improve the problem is to quantify a statistical confidence level for measured axle weight. The quarter-car model is used to simulate vehicle motion, Also, the road input to vehicle model can be characterized in statistical terms by PSD (power spectral density) of appropriate amplitude and frequency contents other than an exact spatial distribution. The confidence levels for the measured axle weight can be obtained by the random process analysis using both vehicle model and road input.

  • PDF

A Method toy Modifying Dynamically Measured Axle Load Using Tire model (타이어 모델을 이용한 계측 축중의 보상 방법)

  • 조일수;김성욱;이주형;박종연;이동훈;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.437-437
    • /
    • 2000
  • It is more difficult to accurately weigh vehicles in motion than to weigh standing vehicles. The difficulties in weighing vehicles result from sensor Limitations as well as dynamic effects induced by vehicle/pavement interactions, This paper presents a method for improving the accuracy of measured axle load information using the so-called adaptive footprint tire model. The total vehicle weight as well as individual axle weight information are obtained experimentally using two piezoelectric sensors. Results are obtained for a light car, mid-site passenger car, and 2 dump trucks with known weight experimental results show that the proposed method using the tire model is accurate.

  • PDF

Identification of Running Vehicle Properties by Vertical Stiffener Response of Steel Girder Bridge (강 거더교의 수직보강재 응답을 이용한 주행차량의 특성 추정)

  • Lee, Hee-Hyun;Jeon, Jun-Chang;Jung, Min-Sun;Kyung, Kab-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.86-95
    • /
    • 2012
  • The BWIM(Bridge Weigh-In-Motion) is a technology to identify vehicle properties, such as weight, speed, axle spacing and running lane, passing over a bridge by using dynamic response of bridge member. Such information will be used for assessing durability and establishing a maintenance strategy of roadway structures. In this paper, as a first step for developing BWIM system, analytical and experimental studies were conducted in order to verify whether the response of vertical stiffener in steel girder bridge can be used to identify vehicle properties running on the bridge. It was known from this study that such vehicle information could be estimated reasonably by using strain time history curve of a vertical stiffener due to running vehicles. It is because the effect of each axle-load of vehicle appears definitely in the curve. However, as the magnitude of strain of vertical stiffener is effected by running pattern of vehicles, further study is necessary to reduce error when estimating vehicle weight.

Evaluating Rutting Performance of High-Durability Asphalt Concrete Mixtures and Epoxy Used for Installation of High-Speed Weigh-In-Motion System (고속축중기 시스템의 도입을 위한 고기능 아스팔트 혼합물 및 에폭시의 내구성 평가)

  • Kwon, Hong Jun;Lee, Jong Sub;Kwon, Oh Sun;Kwon, Soon Min
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.7-13
    • /
    • 2018
  • PURPOSES : In order to apply high-speed weigh-in-motion (HS WIM) systems to asphalt pavement, three high-durability asphalt concrete mixtures installed with a WIM epoxy are evaluated. METHODS : In this study, dynamic stability, number of loading repetitions to reach the rut depth of 1 mm, and rut depth measurements of three asphalt mixtures at $60^{\circ}C$ were compared using an Asphalt Pavement Analyzer (APA). Laboratory-fabricated material and field core samples were prepared and tested according to KS F2374. RESULTS : Through the laboratory tests, it was found that all three modified asphalt mixtures (stone-mastic, porous, and semi-rigid) with WIM epoxy showed favorable permanent deformation results and passed the dynamic stability criterion of 3000 loading repetitions per 1 mm. In addition, it was confirmed that the modified SMA mixtures cored from the field construction yields satisfactory rutting testing results using the APA. Finally, the epoxy used for the HS WIM installation shows good adhesion with the three asphalt mixtures and permanent deformation resistance.

EFFECTIVENESS ANALYSIS OF GROUND IMPROVEMENT TREATED BY DYNAMIC CONSOLIDATION (동압밀공법을 이용한 지반개량 사례연구)

  • 양정수;손준익
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.137-144
    • /
    • 1992
  • This paper reports a case study of dynamic consolidation. The objective of the study is to evaluate the effectiveness of ground improvement at the site for Hyundai Petrochemical Compound constructed at Daesan-Myeon, Seosan-Gun in the western shores of Korea. The site ground was prepared by filling on the existing soft marine deposit which consists of a loose granular soil layer and a medium stiff clay layer. For the stabilization of site ground, the compaction was executed in three different procedures with same pounder weigh, drop height and imprint spacing. The post investigation showed that the object was successfully achieved indicating a significant increase of bearing capacity of the treated ground. In this study the effectiveness of dynamic consolidation is evluated for various factors the applied energy, temping sequences, the radial distance from the imprint location and the depth of bed rock.

  • PDF

A study on the development of dynamic weighing measurement system (동하중 측정 신호처리의 개발에 관한 연구)

  • Park, Chan-Won;Shin, Hyoung-Jae;Lee, Young-Jun;Shin, Young-kyun;Ann, Kwang-Hee
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.173-180
    • /
    • 1998
  • A high speed and stable A/D conversion data process is required to weigh a mass on moving conveyer weighing platter. The paper presents a new method to obtain stable and fast automatic weighing A/D conversion data process. Dynamic weighting system which is constructed with dual load cell is realized by the stable A/D conversion data process algorithm using DSP. The proposed method is applied to the real design, and that experimental results showed good performances of the weighing stability.

  • PDF

Vehicle Load Analysis using Bridge-Weigh-in-Motion System in a Cable Stayed Bridge (BWIM 시스템을 사용한 사장교의 차량하중 분석)

  • Park, Min-Seok;Lee, Jung-Whee;Kim, Sung-Kon;Jo, Byung-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.1-8
    • /
    • 2006
  • This paper describes the procedures developing the algorithm for analyzing signals acquired from the Bridge Weigh-in-Motion (BWIM) system installed in Seohae Bridge as a part of the bridge monitoring system. Through the analysis procedure, information about heavy traffics such as weight, speed, and number of axles are attempted to be extracted from time domain strain data of the BWIM system. One of numerous pattern recognition techniques, artificial neural network (ANN) is employed since it can effectively include dynamic effects, bridge-vehicle interaction, etc. A number of vehicle running experiments with sufficient load cases are executed to acquire training and/or test set of ANN. Extracted traffic information can be utilized for developing quantitative database of loading effect. Also, it can contribute to estimate fatigue lift or current health condition, and design truck can be revised based on the database reflecting recent trend of traffic.

Dynamic Analysis of Automotive Belt Drive Systems (자동차 동력전달용 일체 벨트구동계의 동특성 해석)

  • 오석일;송재수;김성원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.109-120
    • /
    • 1996
  • Serpentine belt drive system offers the advantages of light weigh, low cost, quientness, and efficiency. Since these belts are typically longer than conventional belts, a tensioner component is added to maintain acceptable belt tension levels and make no slippage between pulleys and belts. This paper addresses the modeling and analysis of the automotive belt drive systems and also addresses the predicton of slippage on rotational modes. Vibration characteristics are determined from the eigenvalue problem governing the free response. Under certain engine operating conditions, the dynamic tension fluctuations may be sufficient to cause the belt to slip on particular accessory pulleys, It is found that this slippage can be reduced by adding the tensioner component from the analysis of belt tension and belt compression.

  • PDF