• 제목/요약/키워드: Dynamic seat

검색결과 114건 처리시간 0.032초

최대공산 추정법을 이용한 항공기 동안정성 비행시험 (Dynamic Stability Flight Test for Small Aircraft using Modified Maximum Likelihood Estimation)

  • 이상종;박정호;장재원;박일경;김근택;성기정
    • 항공우주기술
    • /
    • 제9권2호
    • /
    • pp.105-115
    • /
    • 2010
  • 본 논문에서는 소형항공기의 종축 및 횡방향축 동안정성 비행시험을 수행하고 그 결과를 분석 정리하였다. 대상 항공기는 한국항공우주연구원에서 개발한 4인승 선미익형 항공기인 반디 실용화 1호기이며, 탑재 센서 및 실시간 텔레메트리시스템을 통해 비행시험 데이터를 확보하였다. 대상 항공기의 동안정성 비행시험은 대상 항공기 운동모델의 공력 미계수를 추정하여 고유주파수 및 댐핑 등의 비행성을 판별하여 동안정성을 분석할 목적으로 수행되며, 본 비행시험에서는 chirp, 3211 및 doublet 조종입력을 사용하여 비행데이터를 확보한 후 최대공산 추정기법 (MMLE)을 적용하여 공력 미계수를 추정하였다.

내접 기어를 이용한 프리텐셔너의 구동 메커니즘 개발 (Development of Operating Mechanism of a Pretensioner using Internal Gear Pairs)

  • 정성필;박태원;김욱현;홍요선
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.89-94
    • /
    • 2010
  • The pretensioner is used to retract the belt webbing and tighten up any slack in the event of a crash. The retracting force of the pretensioner helps move the passenger into the optimum crash position in his or her seat. In this paper, the new concept of an operating mechanism of the pretensioning system is presented. The internal gear design program is developed using MATLAB. Two kinds of numerical analysis model are created. The first one, the rigid body dynamic model, is used to estimate the performance of several gear pairs. The initial performance of the new operating mechanism is analyzed and the best combination of the gear pairs is selected. The second one, the structural dynamic model, is used to calculate the deformation of the gear teeth. To decrease the deformation and interference of the teeth, the shape of the gear pairs is changed.

궤도차량의 동적반응 최적설계에 관한 연구 (A Study on Dynamic Response Optimization of a Tracked Vehicle)

  • 김영훈;김민수;최동훈;유홍희;김종수;김재용;서문석
    • 한국자동차공학회논문집
    • /
    • 제3권2호
    • /
    • pp.16-29
    • /
    • 1995
  • In this study a tracked vehicle is idealized as a 2-dimensional 9-degrees-of-freedom model which takes into account the effects of HSU units, torsion bars, and track. For the model equations of motion are derived using Kane's method. By using the equations of motion, a numerical example is solved and results are compared to those obtained by using a general purpose multi body dynamic analysis program. The comparison study shows the reasonable coherence between the two results. which confirms the effectiveness of the model. With the model, dynamic response optimization is carried out. The objective function is the peak value of the vertical acceleration of the vehicle at the driver's seat, and the constraints are the wheel travel limits, the ground clearance. and the limits of other design variables. Three different sets of design variables are chosen and used for the optimization. The results show the attenuation of the acceleration peak value. Thus the procedure presented in this study can be utilized for the design improvement of the real system.

  • PDF

Ride comfort of the bridge-traffic-wind coupled system considering bridge surface deterioration

  • Liu, Yang;Yin, Xinfeng;Deng, Lu;Cai, C.S.
    • Wind and Structures
    • /
    • 제23권1호
    • /
    • pp.19-43
    • /
    • 2016
  • In the present study, a new methodology is presented to study the ride comfort and bridge responses of a long-span bridge-traffic-wind coupled vibration system considering stochastic characteristics of traffic flow and bridge surface progressive deterioration. A three-dimensional vehicle model with 24 degrees-of-freedoms (DOFs) including a three-dimensional non-linear suspension seat model and the longitudinal vibration of the vehicle is firstly presented to study the ride comfort. An improved cellular automaton (CA) model considering the influence of the next-nearest neighbor vehicles and a progressive deterioration model for bridge surface roughness are firstly introduced. Based on the equivalent dynamic vehicle model approach, the bridge-traffic-wind coupled equations are established by combining the equations of motion of both the bridge and vehicles in traffic using the displacement relationship and interaction force relationship at the patch contact. The numerical simulations show that the proposed method can simulate rationally the ride comfort and bridge responses of the bridge-traffic-wind coupled system; and the vertical, lateral, and longitudinal vibrations of the driver seat model can affect significantly the driver's comfort, as expected.

둔부의 압력분포 비교를 이용한 고령자용 기립보조의자의 기립 최적각도 제안 (A proposal of the Optimal Angle of Standing Assistant Chair for the Elderly by Comparing of Pressure Distribution on Hip)

  • 장성호;백지훈;이중언;;강석완;이왕범
    • 산업경영시스템학회지
    • /
    • 제41권3호
    • /
    • pp.108-114
    • /
    • 2018
  • One of the most performed action in daily life is standing up from sitting position. As the population of the world is aging at the high rates, people may face problems with reduced muscle strength as well as psychological changes. This can lead elderly people having difficulties with standing up from chair. Now, with the aging trend worldwide, products are being developed that can support the lives of the elderly. This study examines the distribution of hip pressure in relation to the seating positions of the standing assistance seats under development to prevent standing up accidents in older adults. The currently developing standing assistant chair designed to tilt to a maximum angle of 25 degrees. At over $25^{\circ}$, design considers that older people are at risk of thrown back out of that force and that the forces exerted on their arms and legs can be a significant burden to older people. By considering danger of higher than $25^{\circ}$ for older people which is experimented in the basis of static capturing approach in previous papers, it is experimented people with age group of 20~60 on $0^{\circ}$ to $25^{\circ}$ tilting angle on the basis of dynamic capturing method in order to pick convenient angle of inclination. Moreover, tried to find the optimum angle by comparing the hip pressure distribution when seated at the edge of the seat and at the center of the seat with the pressure distribution sensor.

수직 방향 진동에 대한 인체의 동적 응답 특성에 관한 연구 (A Study on Dynamic Response Characteristics of Seating Human Body Exposed to Vertical Vibration)

  • 송수연;채창국;김광준;장한기;김승한
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.522-528
    • /
    • 2000
  • Dynamic characteristics of seated human body were investigated by measuring apparent masses of eight different seating subjects exposed to vertical vibration. Two types of vibration signals - one is random signals over 1 to 30Hz having flat spectral density and the other is signals measured on seat rail in passenger car under driving conditions - were employed. It was found that the apparent masses are highly dependent on vibration level rather than type of the vibration signals. Based on the apparent mass measurements, a mathematical model of the human body in seating posture was developed by using genetic algorithm. Three-degree-of-freedom model was satisfactory in describing apparent mass of seated human body.

  • PDF

Q10 더미를 이용한 어린이용 안전장치 동적 성능 평가 (A Study on Child Restraints System for Q10 dummy in frontal sled test)

  • 김승기;오형준
    • 자동차안전학회지
    • /
    • 제7권1호
    • /
    • pp.13-19
    • /
    • 2015
  • Recently, Child safety has become one of the issue with Q10 dummy representing large child. The objective of this paper was to evaluate performance of three child restraints system (backless booster, high-back booster and without booster) by changing D-ring location in the rear seat. Sled tests were carried out with a Q 10 in 64km/h frontal impact. Before the dynamic sled tests, we assessed dummy positioning with difference in CRS types and height adjustment positions. Dynamic sled test results indicated that there is different performance of CRS types and belt routing. These test results will use as base line data for development CRS safety performance for Q 10.

차륜답면 변화에 따른 여객열차의 진동$\cdot$승차감 해석 (The analysis of the oscillating comfort in passenger coaches in accordance with variations of the wheel-tread.)

  • 박규한;박영일;김재철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.527-532
    • /
    • 2004
  • As well as the vibration comfort in passenger coaches largely affects passengers, it is one of the most important factors that passengers would betray their dissatisfactions among various elements, such as noise, lighting, couches, seat-arrangement, ventilation, temperature, odor, cleanliness, etc., consisting of comfort in passenger coaches. The wheel-tread figuration in the dynamic behavior of trainsets significantly affects the vibration comfort such as the running safety and the running stability. In this study, therefore, I will examine the dynamic characteristic in passenger coaches in accordance with the variation of wheel-tread figuration during the high-speed traveling with the target of trainsets (KT23 bogie), which are operated as the passenger coache in Korea, and any variation that will exert baneful influence on the vibration comfort accordingly.

  • PDF

전방 충돌에 따른 유아 승객 거동을 위한 3세 유아 모델의 개발 (Development of a Three Years Old Child Model for the Analysis of Child Occupant Response subjects in Frontal Collision)

  • 김영은;김희석
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권1호
    • /
    • pp.21-27
    • /
    • 1999
  • 최근 들어 많은 관심에 대상이 되고 있는 동차 사고시 어린이 승객의 부상현상을 해석하기 위하여 범용 동력학 패키지인 DADS를 이용하여 3세 어린이 모델을 개발하였다. 모델은 모두 14개의 요소들과 12개의 조인트로 구성 시켰으며 부스터를 장착한 시트에 3점식 벨트를 체결한 형태로 개발되었으며 썰매를 이용한 전방 충돌 시뮬레이션 결과 기존의 더미를 이용한 실험 결과와 일치하는 응답 특성을 얻을 수 있었다.

  • PDF

타이어 설계인자별 Shimmy&Shake 영향도 분석에 관한 연구 (The Study on the Influence Analysis of Shimmy&Shake due to Tire Design Parameters)

  • 배철용;권성진;김찬중;이봉현;구병국;노국희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.415-420
    • /
    • 2007
  • The objective of this study analyzes the influence of shimmy & shake phenomena due to tire design parameters which are RFV(radial force variation), DB(dynamic balance), RRO(radial run out) and air pressure. These parameters are inspection items for Q.C. after tires are manufactured. In order to analyze these parameters on this study, vehicle driving tests were achieved. The test modes are two type which are constant speed and coast-down driving. On this tests the dynamic characteristics of shimmy & shake are measured by the 3-axises accelerometers at the various positions that are knuckle(left & right), rack pinion, seat and steering wheel. In according to analyzed results, the longitudinal vibration of knuckle parts affects the lateral vibration of rack pinion and this vibration affects the lateral vibration of steering wheel that is the shimmy phenomena. Also the over and under DB by comparison with normal DB and the increment of RRO affect the occurrence of shimmy & shake phenomena.

  • PDF