• 제목/요약/키워드: Dynamic geometry software

검색결과 62건 처리시간 0.021초

유체 진동자의 최적 설계 (Optimum Design of a Micro-fluidic Oscillator)

  • 노유정;윤성기;김문언
    • 대한기계학회논문집A
    • /
    • 제28권1호
    • /
    • pp.22-30
    • /
    • 2004
  • A micro-fluidic oscillator is used to control a linear actuator in a dynamic microsystem. The pressure difference at its two output ports causes the linear actuator to move, and it is a standard of judging the performance of the oscillator. The performance can be improved by optimizing the geometry of the oscillator, which has to enable fluid jet to switch at low inlet velocity. For this, in this study the relationship between the pressure coefficient (difference) and geometric parameters is obtained through the analysis using the software FLUENT. From the results the optimized model that maximize the output pressure difference is obtained by using a cyclic coordinate method that is one of optimization methods. As a result not only the performance is improved, but also the working range is more widen.

트랙터 변속장치 기어의 3차원 파라매트릭 설계 및 분석 (Development of the 3D parametric modeling system for transmission gears of tractor)

  • 유우식;김성균
    • 산업경영시스템학회지
    • /
    • 제23권57호
    • /
    • pp.87-92
    • /
    • 2000
  • This paper describes a three dimensional parametric modeling system for transmission gears of tractor. In conventional design and manufacturing, information about three dimensional shapes has been described in engineering drawings. However drawing based design presents several problems; 1) communication errors between the designer and the modeller or manufacturer. 2) time taken and costs incurred in the design process. To solve these problems the system of parametric design based modeling has been proposed. Developed system in this paper consists of four steps; 1) parametric design of transmission gears with a solid modeler. 2) evaluation of gear geometry and strength. 3) dynamic simulation for gear interference check. 4) gear stress analysis with a CAE software. The proposed system has been tested in the fields and found to be a useful system.

  • PDF

최소시간 강하선 문제의 실증적·수학적 고찰 (Empirical and Mathematical Study on the Brachistochrone Problem)

  • 이동원;이양;정영우
    • East Asian mathematical journal
    • /
    • 제30권4호
    • /
    • pp.475-491
    • /
    • 2014
  • We can easily see the 'cycloid slide' in the many mathematics and science museums. The educational materials, however, do not give us any mathematical principle. For this reason, we, in this thesis, first study the brachistochrone problem in the history of mathematics, and suggest a method of how to teach the principle using 'the dynamic geometry software GSP5' in order to help students understand the idea that the cycloid is the brachistochrone. Secondly, we examine the origin of the calculus of variations and apply it to prove the brachistochrone problem in order to build up the teachers' background knowledge. This allows us to increase the worth of history of mathematics and recognize how useful the learning is which uses technological tools or materials, and we can expect that the learning which makes use of cycloid slide will be meaningful.

원뿔곡선에 관한 Apollonius의 Symptoms 재조명과 시각화 (The reinterpretation and the visualization of Apollonius' symptoms on conic sections)

  • 김향숙;박진석;하형수
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제52권1호
    • /
    • pp.83-95
    • /
    • 2013
  • The purpose of this paper is to explain and reinterprets Apollonius' Symptoms on conic sections based on the current secondary curriculum of mathematics, present the historical background of Apollonius' Symptoms to teachers and students and introduce visualization proof of Apollonius' symptoms on a parabola, a hyperbola and an ellipse by a new method using dynamic geometry software(GSP) respectively.

GSP의 쌍곡원반모형을 활용한 중학교 수학영재 학생들의 쌍곡평면 테셀레이션 구성과정에 관한 연구 (A Study on the Configuring Process of Secondary Mathematically Gifted about the Hyperbolic Plane Tessellation Using Dynamic Geometry Software)

  • 류희찬;이은주
    • 대한수학교육학회지:학교수학
    • /
    • 제15권4호
    • /
    • pp.957-973
    • /
    • 2013
  • 본 연구에서는 중학교 3학년 수학영재 학생들이 비유클리드 쌍곡원반모형에서 정삼각형 테셀레이션을 구성하는 활동을 하면서 나타나는 사고과정을 분석하였다. 역동적 기하환경인 poincare disk. gsp 파일에서 테셀레이션을 구성하기 위해 쌍곡평면에서 도형과 변환에 대한 학습을 하였다. 쌍곡선분의 특징을 탐구하고 도형인 정삼각형의 작도와 반전 변환을 학습 한 후 작도 과정을 반복한 후 쌍곡평면에서 테셀레이션이 가능하게 되는 조건을 탐구하는 과제를 해결하였다. 학생들은 이러한 과제를 해결하며 다양한 전략적 사고과정이 나타났고, 비유클리드 기하체계를 인지하는 경험을 할 수 있었다.

  • PDF

Identifying torsional eccentricity in buildings without performing detailed structural analysis

  • Tamizharasi, G.;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • 제23권3호
    • /
    • pp.283-295
    • /
    • 2022
  • Seismic design codes permit the use of Equivalent Static Analysis of buildings considering torsional eccentricity e with dynamic amplification factors on structural eccentricity and some accidental eccentricity. Estimation of e in buildings is not addressed in codes. This paper presents a simple approximate method to estimate e in RC Moment Frame and RC Structural Wall buildings, which required no detailed structural analysis. The method is validated by 3D analysis (using commercial structural analysis software) of a spectrum of building. Results show that dynamic amplification factor should be applied on torsional eccentricity when performing Response Spectrum Analysis also. Also, irregular or mixed modes of oscillation arise in torsionally unsymmetrical buildings owing to poor geometric distribution of mass and stiffness in plan, which is captured by the mass participation ratio. These irregular modes can be avoided in buildings of any plan geometry by limiting the two critical parameters (normalised torsional eccentricity e/B and Natural Period Ratio 𝜏 =T𝜃/T, where B is building lateral dimension, T𝜃 uncoupled torsional natural period and T uncoupled translational natural period). Suggestions are made for new building code provisions.

'Polyhedron'을 활용한 다면체 학습에 관한 연구 (A study on the Learning Polyhedra using 'Polyhedron')

  • 권성룡
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제45권2호
    • /
    • pp.191-204
    • /
    • 2006
  • Computer technology has a potential to change the contents of school mathematics and the way of teaching mathematics. But in our country, the problem whether computer technology should be introduced into mathematics classroom or not was not resolved yet. As a tool, computer technology can be used by teachers who are confident of the effectiveness and who can use it skillfully and can help students to understand mathematics. The purpose of this study was to investigate the effective way to introduce and utilize computer technology based on the status quo of mathematics classroom setting. One possible way to utilize computer technology in mathematics classroom in spite of the lack of computer and the inaccessibility of useful software is using domain specific simulation software like 'Polyhedron'. 'Polyhedron', as we can guess from the name, can be used to explore regular and semi regular polyhedra and the relationship between them. Its functions are limited but it can visualize regular polyhedra, transform regular polyhedra into other polyhedra. So it is easier to operate than other dynamic geometry software like GSP. To investigate the effect of using this software in mathematics class, three classes(one in 6th grade from science education institute for the gifted, two in 7th grade) were chosen. Activities focused on the relationship between regular and semi regular polyhedra. After the class, several conclusions were drawn from the observation. First, 'Polyhedron' can be used effectively to explore the relationship between regular and semi regular polyhedra. Second, 'Polyhedron' can motivate students. Third, Students can understand the duality of polyhedra. Fourth, Students can visualize various polyhedra by reasoning. To help teachers in using technology, web sites like NCTM's illuminations and NLVM of Utah university need to be developed.

  • PDF

Manual model updating of highway bridges under operational condition

  • Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.39-46
    • /
    • 2017
  • Finite element model updating is very effective procedure to determine the uncertainty parameters in structural model and minimize the differences between experimentally and numerically identified dynamic characteristics. This procedure can be practiced with manual and automatic model updating procedures. The manual model updating involves manual changes of geometry and analyses parameters by trial and error, guided by engineering judgement. Besides, the automated updating is performed by constructing a series of loops based on optimization procedures. This paper addresses the ambient vibration based finite element model updating of long span reinforced concrete highway bridges using manual model updating procedure. Birecik Highway Bridge located on the $81^{st}km$ of Şanliurfa-Gaziantep state highway over Firat River in Turkey is selected as a case study. The structural carrier system of the bridge consists of two main parts: Arch and Beam Compartments. In this part of the paper, the arch compartment is investigated. Three dimensional finite element model of the arch compartment of the bridge is constructed using SAP2000 software to determine the dynamic characteristics, numerically. Operational Modal Analysis method is used to extract dynamic characteristics using Enhanced Frequency Domain Decomposition method. Numerically and experimentally identified dynamic characteristics are compared with each other and finite element model of the arch compartment of the bridge is updated manually by changing some uncertain parameters such as section properties, damages, boundary conditions and material properties to reduce the difference between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of long span highway bridges. Maximum differences between the natural frequencies are reduced averagely from %49.1 to %0.6 by model updating. Also, a good harmony is found between mode shapes after finite element model updating.

고등학교 수학 교과서의 공학 도구 활용 현황 분석 (An analysis of the use of technology tools in high school mathematics textbooks based )

  • 오세준
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제38권2호
    • /
    • pp.263-286
    • /
    • 2024
  • 인공지능 디지털 교과서 도입에 따라 수학 교육에서 공학 도구의 활용에 대한 관심이 높아지고 있다. 공학 도구는 수학적 개념을 시각화하고, 실험과 탐구를 통해 수학적 원리를 발견할 수 있는 장점이 있다. 이미 우리나라 2015 개정 수학과 교육과정에서도 공학 도구의 활용을 언급하고 있으며, 이에 따라 수학 교과서에는 다양한 공학 도구를 활용한 교수·학습 활동이 제시되고 있다. 그러나 고등학교 교과서에 제시된 공학 도구의 유형과 활용 방식에 대한 체계적인 분석은 아직 부족한 실정이다. 이에 본 연구에서는 2015 개정 교육과정에 따른 고등학교 수학 교과서에 제시된 공학 도구의 활용 현황을 분석하였다. 이를 위해 수학 교과서에 제시된 공학 도구의 유형을 범주화하고, 각 범주별 활용 비율을 조사하였다. 또한 교과목별, 내용 영역별로 공학 도구의 활용 양상을 분석하고, 교수·학습 활동 형태에 따른 공학 도구의 활용 비율을 살펴보았다. 연구 결과, 공학 도구는 교과목과 내용 영역에 따라 다양한 유형과 비율로 활용되고 있었다. 특히, 기호-조작 그래프 작성 소프트웨어 범주의 공학 도구가 전체 활용 사례의 58%를 차지하여 가장 높은 비중을 나타냈다. 교과목별로는 해석 영역을 다루는 과목에서 기호-조작 그래프 작성 소프트웨어의 활용이 두드러졌으며, 기하 영역에서는 동적 기하 소프트웨어의 활용이 상대적으로 높게 나타났다. 교수·학습 활동 형태 측면에서는 보조도구형(49%)과 의도된 탐구유도형(37%)의 활용 비율이 높았다. 본 연구의 결과는 수학 교과서에서 공학 도구가 다양한 역할을 하고 있음을 보여주며, 향후 공학 도구를 활용한 수학 교수·학습 방법을 개선하는 데 유용한 시사점을 제공할 수 있을 것이다.

Structural response of historical masonry arch bridges under different arch curvature considering soil-structure interaction

  • Altunisik, Ahmet Can;Kanbur, Burcu;Genc, Ali Fuat;Kalkan, Ebru
    • Geomechanics and Engineering
    • /
    • 제18권2호
    • /
    • pp.141-151
    • /
    • 2019
  • In this paper, it is aimed to present a detail investigation about the comparison of static and dynamic behavior of historical masonry arch bridges considering different arch curvature. $G{\ddot{o}}derni$ historical masonry two-span arch bridge which is located in Kulp town, Diyarbakir, Turkey is selected as a numerical application. The bridge takes part in bowless bridge group and built in large measures than the others. The restoration projects were approved and rehabilitation studies have still continued. Finite element model of the bridge is constituted with special software to determine the static and dynamic behavior. To demonstrate the arch curvature effect, the finite element model are reconstructed considering different arch curvature between 2.86 m-3.76 m for first arch and 2.64 m-3.54 m for second arch with the increment of 0.10 m, respectively. Dead and live vehicle loads are taken into account during static analyses. 1999 Kocaeli earthquake ground motion record is considered for time history analyses. The maximum displacements, principal stresses and elastic strains are compared with each other using contour diagrams. It is seen that the arch curvature has more influence on the structural response of historical masonry arch bridges. At the end of the study, it is seen that with the increasing of the arch heights, the maximum displacements, minimum principal stresses and minimum elastic strains have a decreasing trend in all analyses, in addition maximum principal stresses and maximum elastic strains have unchanging trend up to optimum geometry.