Abstract
We can easily see the 'cycloid slide' in the many mathematics and science museums. The educational materials, however, do not give us any mathematical principle. For this reason, we, in this thesis, first study the brachistochrone problem in the history of mathematics, and suggest a method of how to teach the principle using 'the dynamic geometry software GSP5' in order to help students understand the idea that the cycloid is the brachistochrone. Secondly, we examine the origin of the calculus of variations and apply it to prove the brachistochrone problem in order to build up the teachers' background knowledge. This allows us to increase the worth of history of mathematics and recognize how useful the learning is which uses technological tools or materials, and we can expect that the learning which makes use of cycloid slide will be meaningful.