• Title/Summary/Keyword: Dynamic equations

Search Result 2,279, Processing Time 0.036 seconds

The Effect of Oil Supply Conditions on the Dynamic Performance of a Hydrodynamic Journal Bearing

  • Son, Sang-Ik;Kim, Kyung-Woong
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.6-12
    • /
    • 2009
  • In this study, the effect of oil supply conditions on the dynamic performance of a hydrodynamic journal bearing is analyzed numerically. Axial length, circumferential length and location of oil grooves are considered as oil supply conditions. The perturbation equations of the perturbed film contents are obtained by applying Elrod's universal equation implementing JFO film rupture / reformation boundary conditions to Lund's infinitesimal perturbation method. The dynamic coefficients of a hydrodynamic journal bearing are calculated by solving the perturbation equations, and the linear stability analysis is carried out by using those for a variety of oil supply conditions.

Dynamic analysis of constrained multibody systems using Kane's method (케인방법을 이용한 구속 다물체계의 동역학 해석)

  • Park, Jeong-Hun;Yu, Hong-Hui;Hwang, Yo-Ha;Bae, Dae-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2156-2164
    • /
    • 1997
  • A new formulation for the dynamic analysis of constrained multibody systems is presented in this paper. The formulation employs Kane's method along with the null space method. Kane's method reduces the dimension of equations of motion by using partial velocity matrix introduced in this study : it can improve the efficiency of the formulation. Three numerical examples are given to demonstrate the accuracy and efficiency of the formulation.

Spectral Element Vibration Analysis of the Pipeline Conveying Internal Flow (내부유동을 갖는 파이프 진동의 스펙트럴요소해석)

  • Oh, Hyuck-Jin;Kang, Kwan-Ho;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.294-301
    • /
    • 2003
  • It is of often important to accurately predict the flow-induced vibration or dynamic instability of a pipeline conveying internal high speed flow in advance, which requires a very accurate solution method. In this study, first the dynamic equations for the axial and transverse vibrations of a pipeline are reduced from a set of pipe-dynamic equations derived in the previous study and then the spectral element model is formulated. The accuracy of the spectral element method (SEM) is then verified by comparing its results with the results obtained by finite element method (FEM). It is shown that the present spectral element model provides very accurate solutions by using an extremely small number of degrees-of-freedom when compared with FEM. The dynamics of a sample pipeline is investigated with varying the axial tension and the speed of internal flow.

A Numerical Method for Dynamic Analysis of Tracked Vehicles of High Mobility

  • Lee, Ki-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1028-1040
    • /
    • 2000
  • A numerical method is presented for the dynamic analysis of military tracked vehicles of high mobility. To compute the impulsive dynamic contact forces which occur when a vehicle passes on a ground obstacle, the track is modeled as the combination of elastic links interconected by pin joints. The mass of each track link, the elastic elongation of a track link between pin joints by the track tension, and the elastic spring effects on the upper and lower surfaces of each track link have been considered in the equations of motion. And the chassis, torsion bar arms, and road wheels of the vehicle are modeled as the rigid multi bodies connected with kinematic constraints. The contact positions and the contact forces between the road wheels and track, and the ground and the the track are simultaneously computed with the solution of the equations of motions of the vehicle consisting of the multibodies. The iterative scheme for the solution of the multi body dynamics of the tracked vehicle is presented and the numerical simulations are conducted.

  • PDF

Dynamic Contact Analysis of Spur Gears (평기어의 동접촉 해석)

  • Lee, Ki-Su;Jang, Tae-Sa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.148-159
    • /
    • 1999
  • A numerical method is presented for the dynamic analysis of spur gears rotating with very high angular speeds. For an efficient computation each gear is assumed to consist of a rotating rigid disk and an elastic tooth having mass, and finite element formulations are used for the equations of motion of the tooth. The geometric constraint is imposed between the rigid disk and the elastic tooth to fix them, and contact condition is imposed between the meshing teeth of the gears. At each iteration of each time step the Lagrange multiplier and contact force are revised by using the constraint error vector, and then the whole equations of motion are time integrated with the given Lagrange multiplier and contact force. For the accurate solution the velocity and acceleration constraints as well as the displacement constraint are satisfied by the monotone reductions of the constraint error vectors. Computing procedures associated with the iterative schemes are explained and numerical simulations are conducted with the spur gears.

  • PDF

Dynamic Modeling of Transmission Line Galloping Vibrations (송전선 갤러핑 진동에 대한 동적 모델링 연구)

  • Kwak, Moon K.;Koo, Jae-Ryang;Bae, Yong-Chae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.518-522
    • /
    • 2014
  • This paper is concerned with the dynamic modeling of transmission line undergoing galloping vibrations. To this end, the kinetic and potential energies of a uniform wire vibrating in space are derived. The equations of motion suitable for numerical simulations are derived using the assumed mode method and Lagrange equation. The resulting equations of motion are expressed in matrix form. To cope with bundled transmission line, the spacer was modelled by a spring element. As a numerical example, a two-wire transmission line combined by spacers was considered. Natural vibration characteristics show that the in-plane vibrations of the transmission line appeared in low frequency range, which may lead to galloping.

  • PDF

Dynamic Stability Analysis of an Axially Accelerating Beam Structure (축 방향 가속을 받는 보 구조물의 동적 안정성 해석)

  • Eun, Sung-Jin;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1053-1059
    • /
    • 2005
  • Dynamic stability of an axially accelerating beam structure is investigated in this paper. The equations of motion of a fixed-free beam are derived using the hybrid deformation variable method and the assumed mode method. Unstable regions due to periodical acceleration are obtained by using the Floquet's theory. Stability diagrams are presented to illustrate the influence of the dimensionless acceleration, amplitude, and frequency. Also, buckling occurs when the acceleration exceeds a certain value. It is found that relatively large unstable regions exist around the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the stability diagram is confirmed by direct numerical integration of the equations of motion.

Integrated equations of motion for direct integration methods

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.569-589
    • /
    • 2002
  • In performing the dynamic analysis, the step size used in a step-by-step integration method might be much smaller than that required by the accuracy consideration in order to capture the rapid chances of dynamic loading or to eliminate the linearization errors. It was first found by Chen and Robinson that these difficulties might be overcome by integrating the equations of motion with respect to time once. A further study of this technique is conducted herein. This include the theoretical evaluation and comparison of the capability to capture the rapid changes of dynamic loading if using the constant average acceleration method and its integral form and the exploration of the superiority of the time integration to reduce the linearization error. In addition, its advantage in the solution of the impact problems or the wave propagation problems is also numerically demonstrated. It seems that this time integration technique can be applicable to all the currently available direct integration methods.

Exact Dynamic Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Beams Subjected to Initial Forces (초기하중을 받는 전단변형을 고려한 비대칭 박벽보의 엄밀한 동적 요소강도행렬)

  • 윤희택;김동욱;김상훈;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.435-442
    • /
    • 2001
  • Derivation procedures of exact dynamic element stiffness matrix of shear deformable nonsymmetric thin-walled straight beams are rigorously presented for the spatial free vibration analysis. An exact dynamic element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The natural frequencies are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF

Internal Wave Computations based on a Discontinuity in Dynamic Pressure (동압 계수의 불연속성을 이용한 내면파의 수치해석)

  • 신상묵;김동훈
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.17-29
    • /
    • 2004
  • Internal waves are computed using a ghost fluid method on an unstructured grid. Discontinuities in density and dynamic pressure are captured in one cell without smearing or oscillations along a multimaterial interface. A time-accurate incompressible Navier-Stokes/Euler solver is developed based on a three-point backward difference formula for the physical time marching. Artificial compressibility is introduced with respect to pseudotime and an implicit method is used for the pseudotime iteration. To track evolution of an interface, a level set function is coupled with the governing equations. Roe's flux difference splitting method is used to calculate numerical fluxes of the coupled equations. To get higher order accuracy, dependent variables are reconstructed based on gradients which are calculated using Gauss theorem. For each edge crossing an interface, dynamic pressure is assigned for a ghost node to enforce the continuity of total pressure along the interface. Solitary internal waves are computed and the results are compared with other computational and experimental results.