• Title/Summary/Keyword: Dynamic deflection modulus

Search Result 22, Processing Time 0.035 seconds

A Study on the Estimation of Relative Compaction on the Subgrade using a Portable FWD (소형 FWD를 이용한 노상토의 다짐도 추정에 관한 연구)

  • Kang, Hee-Bog;Kim, Kyo-Jun;Kang, Jin-Tae;Kim, Jong-Ryeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.213-219
    • /
    • 2007
  • This study was intended to estimate of relative compaction on the ground under the load using of portable FWD. The outcome in the wake of the study is highlighted as below. Viewing the variation of dynamic deflection modulus depending on a number of compaction, when a number of compaction increased to 8 (18.3MPa) from 4 (15Mpa), a dynamic deflection modulus increased 27%, and when a number reached to 12 (27.9MPa), it doubled the value indicated in 4. Viewing the relationship between dry density and dynamic deflection modulus in line with the increase in a number of compaction, a number of compaction by the roller reaching to the degree of compaction equivalent to 95% of max dry density was 13, with a dynamic deflection modulus indicating 27MPa ~ 29MPa.

A Study on the Relation between Dynamic Deflection Modulus and In-Situ CBR Using a Portable FWD (소형FWD를 이용한 노상토의 동적변형계수와 현장 CBR의 상관 연구)

  • Kang, Hee Bog;Kim, Kyo Jun;Park, Sung Kyoon;Kim, Jong Ryeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2008
  • The road construction, as part of effort to ease the worsening traffic, has been underway throughout the nation, while the existing road has been increasingly losing its load carrying capacity due to such factors as heavy traffic and weathering. In the case of site, the soil type, plasticity index, and specific gravity were SC, 12.2%, and 2.66, respectively. The maximum dry density, optimum moisture content and modified CBR were $1.895g/cm^3$ (Modified Compaction D), 13.6%, and 16.2%, respectively. A correlation of coefficient expressed good interrelationship by 0.90 between the CBR estimated from a dynamic penetration index of dynamic cone penetrometer test and a deformation modulus converted from a dynamic deflection modulus obtained from a portable FWD test.

Influence of prestressing on the behavior of uncracked concrete beams with a parabolic bonded tendon

  • Bonopera, Marco;Chang, Kuo-Chun;Lin, Tzu-Kang;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • The influence of prestress force on the fundamental frequency and static deflection shape of uncracked Prestressed Concrete (PC) beams with a parabolic bonded tendon was examined in this paper. Due to the conflicts among existing theories, the analytical solutions for properly considering the dynamic and static behavior of these members is not straightforward. A series of experiments were conducted for a total period of approximately 2.5 months on a PC beam made with high strength concrete, subsequently and closely to the 28 days of age of concrete. Specifically, the simply supported PC member was short term subjected to free transverse vibration and three-point bending tests during its early-age. Subsequently, the experimental data were compared with a model that describes the dynamic behavior of PC girders as a combination of two substructures interconnected, i.e., a compressed Euler-Bernoulli beam and a tensioned parabolic cable. It was established that the fundamental frequency of uncracked PC beams with a parabolic bonded tendon is sensitive to the variation of the initial elastic modulus of concrete in the early-age curing. Furthermore, the small variation in experimental frequency with time makes doubtful its use in inverse problem identifications. Conversely, the relationship between prestress force and static deflection shape is well described by the magnification factor formula of the "compression-softening" theory by assuming the variation of the chord elastic modulus of concrete with time.

A comparison between the dynamic and static stiffness of ballasted track: A field study

  • Mosayeb, Seyed-Ali;Zakeri, Jabbar-Ali;Esmaeili, Morteza
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.757-769
    • /
    • 2016
  • Rail support modulus is an important parameter for analysis and design of ballasted railway tracks. One of the challenges in track stiffness assessment is its dynamic nature under the moving trains which differs it from the case of standing trains. So the present study is allocated to establish a relation between the dynamic and static stiffness of ballasted tracks via field measurements. In this regard, two different sites of ballasted tracks with wooden and concrete sleepers were selected and the static and dynamic stiffness were measured based on Talbot - Wasiutynski method. In this matter, the selected tracks were loaded by two heavy and light car bodies for standing and moving conditions and consequently the deflection basins were evaluated in both sites. Knowing the deflection basins respect to light and heavy loading conditions, both of static and dynamic stiffness values were extracted. Finally two definite relations were obtained for ballasted tracks with wooded and concrete sleepers.

DYNAMIC CHARACTERISTICS OF A ROTATING TIMOSHENKO BEAM SUBJECTED TO A VARIABLE MAGNITUDE LOAD TRAVELLING AT VARYING SPEED

  • OMOLOFE, BABATOPE;OGUNYEBI, SEGUN NATHANIEL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.17-35
    • /
    • 2016
  • In this study, the dynamic behaviour of a rotating Timoshenko beam when under the actions of a variable magnitude load moving at non-uniform speed is carried out. The effect of cross-sectional dimension and damping on the flexural motions of the elastic beam was neglected. The coupled second order partial differential equations incorporating the effects of rotary and gyroscopic moment describing the motions of the beam was scrutinized in order to obtain the expression for the dynamic deflection and rotation of the vibrating system using an elegant technique called Galerkin's Method. Analyses of the solutions obtained were carried out and various results were displayed in plotted curve. It was found that the response amplitude of the simply supported beam increases with an increase in the value of the foundation reaction modulus. Effects of other vital structural parameters were also established.

A stochastic finite element method for dynamic analysis of bridge structures under moving loads

  • Liu, Xiang;Jiang, Lizhong;Xiang, Ping;Lai, Zhipeng;Zhang, Yuntai;Liu, Lili
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • In structural engineering, the material properties of the structures such as elastic modulus, shear modulus, density, and size may not be deterministic and may vary at different locations. The dynamic response analysis of such structures may need to consider these properties as stochastic. This paper introduces a stochastic finite element method (SFEM) approach to analyze moving loads problems. Firstly, Karhunen-Loéve expansion (KLE) is applied for expressing the stochastic field of material properties. Then the mathematical expression of the random field is substituted into the finite element model to formulate the corresponding random matrix. Finally, the statistical moment of the dynamic response is calculated by the point estimation method (PEM). The accuracy and efficiency of the dynamic response obtained from the KLE-PEM are demonstrated by the example of a moving load passing through a simply supported Euler-Bernoulli beam, in which the material properties (including elastic modulus and density) are considered as random fields. The results from the KLE-PEM are compared with those from the Monte Carlo simulation. The results demonstrate that the proposed method of KLE-PEM has high accuracy and efficiency. By using the proposed SFEM, the random vertical deflection of a high-speed railway (HSR) bridge is analyzed by considering the random fields of material properties under the moving load of a train.

A Study on Dynamic Characteristic of Robot Cables (로봇 케이블의 동적 특성에 관한 연구)

  • Kim, Jin Kyu;Kim, Jae Bong;Kang, Dae Sun;Choi, Woong Sub;Kim, Moon Young;Lee, Sang Beom;Yim, Hong Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.495-499
    • /
    • 2014
  • In this study, the finite element modeling for the signal cable and pneumatic hose of the industrial robot is developed. The modulus of elasticity of signal cable and pneumatic hose is predicted by deflection test. Finite element model for the signal cable and pneumatic hose is developed by using the modulus of elasticity obtained from the tests. The developed finite element model is estimated through the vibration analysis. This study shows that the developed finite element model can be effectively utilized in the dynamic analysis.

  • PDF

Sensitivity Analysis of 3-Dimensional FE Models for Jointed Concrete Pavements (줄눈 콘크리트포장 3차원 유한요소모델의 민간도 분석)

  • Yoo, Taeseok;Sim, Jongsung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.435-444
    • /
    • 2006
  • This paper investigates the effect of 3-dimensional FE models to evaluation results of jointed concrete pavements which is back-calculated by AREA method. Sensitivity of 3-dimensional FE models developed to simulate the behavior of real jointed concrete pavement are analyzed after compared with 2-dimensional FE models using ILLISLAB. In comparison with 2-dimensional models, influence of concrete contraction under loading plate and base layer on surface deflections is more than that of loading configuration. Deflections at 3-dimensional model between linear and nonlinear temperature distribution under same temperature difference are similar, but noticeable differences are investigated in low elastic modulus of foundations. Dynamic deflections under loading plate are larger than static deflections in high elastic modulus of foundation, but smaller in low elastic modulus. Lower dynamic modulus of subgrade reactions are backcalculated by dynamic deflections than by static deflections. But reverse trend is investigated in the backcalculated elastic modulus of concrete which describes trends of the field backcalculation values calculated from AREA method.

Dynamic Performance of Pedestrian Guardrail System based on 3-D Soil Material Model according to Post Shapes (지주 형상에 따른 3차원 지반재료 모델의 경기장 보행자용 가드레일 동적성능 평가)

  • Yang, Seung-Ho;Lee, Dong-Woo;Shin, Young-Shik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.79-86
    • /
    • 2015
  • This study investigated the embedded depth of guardrail posts through 3-D soil material model and carried out evaluation of the dynamic performance of guard rail. In order to calculate for embedded depth of sloping ground, displacement of guardrail posts is analyzed according to the embedded depth of experiment variables. Through the static test of guardrail posts, the maximum deflection was found to decrease the interval. By performing the dynamic test using the Bogie Car, that is confirmed the elastic modulus of the soil occuring the maximum deflection. Guardrail posts is considered to need for further reinforcement in the larger slope than the plains. This study researched about maximum displacement and deviation velocity through dynamic performance of guardrail system and conducted analysis about protection performance evaluation of passenger.

A Measurement of the Residual Stress and Young's Modulus of p+ Silicon (p+ 실리콘의 강성계수 및 잔류응력 측정)

  • Kim, Sang-Cheol;Jeong, Ok-Chan;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2524-2526
    • /
    • 1998
  • In this paper, the residual stress and young's modulus of the p+ thin film have been estimated by using the electrostatic resonators. The electrostatic plate resonator with four corrugated bridges and another with four flat ones have been fabricated. The deflection of the plate has been calculated under the induced tension and the residual stress and compared with the dynamic test results. When the young's modulus of the p+ silicon is 125 GPa. The estimated residual stresses of the flat and the corrugated bridges are about 15 MPa and less than 5 MPa, respectively. It has been confirmed that the corrugated structure releases the residual tensile stress resulted from the heavy boron diffusion process.

  • PDF