• Title/Summary/Keyword: Dynamic Unbalance

Search Result 188, Processing Time 0.025 seconds

효율적인 회전기계 불균형 응답 계산 방법

  • 박종혁;홍성욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.615-619
    • /
    • 1995
  • The unbalance response analysis is one of the essential area in the forced vibration analysis of rotor-bearing systems. Local bearing parameters in ortor-bearing systems are the major sources which give rise to a difficulty in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and anisotropy. In the present paper, an exact condensation procedure is introduced to easily take into account bearing parameters in computation of unbalance responses for rotor bearing systems. The present method is illustrated through a numerical example and compared with the conventional method.

Dynamic Behavior Analysis of a Crankshaft-Bearing System in Variable Speed Reciprocating Compressor (가변속 왕복동형 압축기 크랭크축-베어링계의 동적 거동 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.426-434
    • /
    • 2001
  • The hermetic reciprocating compressor driven by the BLDC motor rotating with variable speeds, is modelled and analyzed for dynamic characteristics. The governing equations of piston, connecting rod and crank-shaft of the reciprocating compression mechanism and characteristics of driving torque of the motor are obtained. Dynamic behavior of the crankshaft supported on 2 journal bearings is analyzed considering compression load and eccentric unbalance for the 4 rotating speeds of crankshaft. And. reaction forces generated from oil film in the journal bearings are analyzed under transient condition using Reynolds' equation. To take into account the dynamic characteristics depending on the variable rotating speeds, comparison on the dynamic behavior of crank-shaft is made for the 4 operating modes of the compressor. Results show that the magnitude of crankshaft locioperating on the lower rotating speeds is more larger than the higher ones due to reduction of inertia force of the reciprocating piston.

A Study on Dynamic Characteristics of Synchronously Controlled Hydrodynamic Journal Bearing (동기 제어되는 동압 베어링의 동특성에 관한 연구)

  • Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.311-315
    • /
    • 2001
  • In this paper synchronous whirl of bearing is employed as control algorithm of actively controlled hydrodynamic journal bearing to suppress the whirl instability and unbalance response of a rotor-bearing system. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis which uses the Reynolds condition. The stability and unbalance responses of a rotor-bearing system are investigated for various control gain and phase difference between the bearing and journal motion. It is shown that the unbalance response of a rotor-bearing system can be greatly improved by synchronous whirl of the bearing, and there is an optimum phase difference, which gives the minimum unbalance response of the system, at given operating condition. It is also found that the speed at onset of instability can be greatly increased by synchronous whirl of the bearing.

  • PDF

Rotordynamic Analysis for Vibration Reduction of a High Speed Cutter (고속절단기의 진동저감을 위한 회전체역학 해석)

  • Suh, Jun-Ho;Baek, Gyoung-Won;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1056-1061
    • /
    • 2004
  • The vibration of rotor systems is caused by various factors, such as misalignment, unbalance, gear meshing, error of assembly, etc. Modal test and TDA/ODS analysis were done. The dynamic analysis of the armature was done with SAMCEF which is a commercial software for finite element and kinematic analysis. The transient response of the armature is calculated by the SAMCEF with the consideration of magnetic force and bearing stiffness, which are the essential elements for the design of high speed cutter. Main frequency of the vibration is due to the unbalance of the armature. The FEM analysis model considering unbalance and the high speed cutter have same vibration properties. The vibration sources of the high speed cutter is proved to be unbalance.

  • PDF

Balancing of Digital VCR Head Drum (디지털 VCR 헤드 드럼의 밸런싱 연구)

  • 조여욱;이진구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.61-67
    • /
    • 1998
  • Dynamic stability in rotation of the head drum of digital VCR is very important due to the nature of high rotation speed and small angular inertia. Therefore special considerations on reducing the unbalance and assuring the stability are required the design and manufacturing process. In this paper, newly developed digital head drum is introduced. And advanced methods in analyzing and reducing the unbalance is suggested. LDV(Laser Doppler Vibrometer) was used as a measurement system verifying our modeling and new method for balancing. Experiments show that the theoretical data estimated by modeling of shaft bending caused by unbalance mass and the measured data are almost identical. The deflection was reduced to 30% by applying the suggested balancing method.

  • PDF

Rotor Dynamics의 현황과 문제점

  • 김폴영일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.11-19
    • /
    • 1997
  • 이 글의 내용은 다음과 같다 1.서론 2.Rotor Dynamics에서의 Quotes & Misquotes/역사 바로 세우기 3.Rotor Dynamics는 이대로 좋은가\ulcorner 3.1.Rotor Dynamics와 Balancing 3.2.Balancing은 ultra-precision process 3.3.Unbalance response의 현황과 문제점 3.4.Jeffcott Rotor[Jeffcott 1919] 3.5.National Rotor Dynamics Test Facility의 필요성 4.결론

  • PDF

A Study on Development of Railway Reducer for Low Noise/Vibration (소음/진동을 고려한 철도 감속기 개발에 대한 연구)

  • 이형우;박노길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2004
  • A dynamic model of railway reducer is developed by the lumped parameter method. The model accounts for shafts, bearings flexibilities, gyroscopic effects and the force couplings among the transverse and torsion motions due to gearing. Vibration/noise analysis as well as strength of gear teeth, and bearing life are considered. Excitation forces of railway reduction are considered as the mass unbalance of the rotors, misalignment and a function of gear transmission error which comes from the modified tooth surface. A campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors, misalignment and the transmitted errors of the gearing are considered, shows that, at the operating speed, there are not the critical speed. The program which can be used to analyze and predict vibration/noise characteristics by mass unbalance, misalignment and gear transmission error of railway reduction is developed with this system model.

Correction of Mass Unbalance of a High Precision Rotor (Impact를 이용한 정밀 고속 회전체 불평형 보정)

  • Lee, S.B.;Ihn, Y.S.;Oh, D.H.;Kim, H.Y.;Lee, H.S.;Koo, J.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.720-725
    • /
    • 2007
  • The unbalanced mass of a high precision rotor deteriorates mechanical performance of the rotor. The geometrical center of a rotor generally corresponds to the rotational axis of the rotor. However, this alignment carried out with a stationary rotor does not guarantee the dynamic rotor balance. There have been a number of schemes for the correction of the unbalance published for decades especially in the hard drive industry where the issues are directly affecting manufacturing costs and product performances. Realizing the significance of the problem, the present work tries to refine one of the methods that works by applying external impact during a rotor spins. A systematic way to apply the external impact to a rotating rotor has been introduced to minimize unbalance correction process time.