• Title/Summary/Keyword: Dynamic Tidal Power

Search Result 16, Processing Time 0.019 seconds

Dynamic Characteristic Analysis of Water-Turbine Generator Control System of Sihwa Tidal Power Plant (시화조력발전소 수차발전기 제어시스템의 동적 특성 해석)

  • Ahn, Sang-Ji;Ban, Yu-Hyeon;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.180-185
    • /
    • 2012
  • Tidal power is one of new and renewable energy sources. The seawater is stored inside a tidal embankment built at the mouth of a river or bay, where tides ebb and flow. The water turbine-generators produce power by exploiting the gap in the water level between the water outside and inside the embankment. Tidal power plant is a large plant that is installed on the sea. And then, the facility's operations and a separate control system for monitoring and maintenance is required. However, this plant predictive control of building systems and technologies have been avoided the transfer of technology from advanced global companies. Accordingly, the control system for core technology development and localization is urgently needed. This paper presents modeling and simulation using by PSS/E about generator, governor, exciter, and power system stabilizer for control system in Sihwa tidal power plant to improve the efficiency and develope of core technology. And the dynamic characteristics of governor and exciter were analyzed.

Development of Start·Stop Control System at Water Turbine Generator for Tidal Power Plant (조력발전소를 위한 수차발전기의 기동·정지 제어시스템 개발)

  • Cho, Byong-Og;Park, Chul-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.106-112
    • /
    • 2014
  • Recently, tidal power generation has gained much attention. South Korea's tidal power generation systems were imported from abroad by turnkey type and have being operated. Therefore, for efficient operation and technological independence of a tidal power system, development of core technology is required. This paper deals with the start stop control system of water turbine generator in the tidal power plant, as one of our development project results. Using the SCADA system, the status and operations of water turbine generator in the tidal power plant, as well as simulation for calculation of maximum power were carried out. A small model type of start stop control device was also developed. In addition, the control system in Sihwa tidal power plant was modeled, and the results obtained by the dynamic simulation were given in graphics by 2D simulator.

Dynamic Behavior of Floating Tidal Current Power Device Considering Turbine Specifications (터빈 특성을 고려한 부유식 조류발전장치의 운동성능 고찰)

  • Jo, Chul-Hee;Hwang, Su-Jin;Park, Hong-Jae;Kim, Myeong-Joo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.427-432
    • /
    • 2018
  • Tidal current power is one of the energy sources of the ocean. Electricity can be generated by converting the flow energy of the current into the rotational energy of a turbine. Unlike tidal barrage, tidal current power does not require dams, which have a severe environmental impact. A floating-type tidal current power device can reduce the expensive support and installation cost, which usually account for approximately 41% of the total cost. It can also be deployed in relatively deep water using tensioned wires. The dynamic behavior of a floater and turbine force are coupled because the thrust and moment of the turbine affect the floater excursion, and the motion of the floater can affect the incoming speed of the flow into the turbine. To maximize the power generation and stabilize the system, the coupled motion of the floater and turbine must be extensively analyzed. However, unlike pile-fixed devices, there have been few studies involving the motion analysis of a moored-type tidal current power device. In this study, the commercial program OrcaFlex 10.1a was used for a time domain motion analysis. In addition, in-house code was used for an iterative calculation to solve the coupled problems. As a result, it was found that the maximum mooring load of 200 kN and the floater excursion of 5.5 m were increased by the turbine effect. The load that occurred on the mooring system satisfied the safety factor of 1.67 suggested by API. The optimum mooring system for the floating tidal current power device was suggested to maximize the power generation and stability of the floater.

The Study of Dynamic Tidal Power for Practical Use (동적 조력 발전의 실용화를 위한 연구)

  • Park, Young Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.379-385
    • /
    • 2019
  • Dynamic Tidal Power, which is a kind of tidal power generation, requires huge structures, because it is conducted by using the phase difference caused by the diffraction effect of tides. Economic feasibility is most demanded for practical use, and various studies have been conducted for this purpose. In this study, unlike existing methods, several structures were installed to improve it by increasing power generation. The flow changes around the structures were studied, and it was found that proper spacing between structures was necessary for efficient power generation.

Applicability of a new tidal power system with reduced environmental impact (환경영향을 저감한 신형 조력발전기술 적용성 검토)

  • Park, Young Hyun;Youn, Daeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.112-117
    • /
    • 2017
  • Interest in the development of renewable energy sources has been increasing over the past 10 years and the west coast of Korea is one of the most favorable regions for tidal power. Barrage type tidal power is representative of the experience of installation and operation of such power sources for long periods. However, future projects for barrage type energy sources are either delayed or closed due to their environmental impact. For this reason, we applied a new tidal power technology with minimized environmental impact to a candidate area in the west coast and then analyzed its feasibility. The new tidal power technology is called Dynamic Tidal Power (DTP). Because its verification is impossible both in the laboratory and field, a numerical model is used for the evaluation of DTP. This new technology produces tidal power by means of the phase difference caused by diffraction on both sides of a dike built tens of km away from the coast. Because DTP is theoretically able to almost double the tidal range, it is expected to be applicable to even a small tidal area. Unlike the barrage type, it has the advantage of reducing the environmental impact by not enclosing the sea water. The west coast of Korea is close to the metropolitan area and has a high tidal range and, thus, it is thought to be a suitable candidate for tidal power.

A Study on Power System Characteristics and Economic Benefit by Operating the New SIHWA Tidal Power Plant (시화호 조력발전소 신설에 따른 전력계통 특성 및 경제적 이득 분석)

  • Kim, Kyu-Ho;Song, Kyung-Bin;Kim, Sang-Min;Lee, Mu-Sung;Choi, Hong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.791-796
    • /
    • 2012
  • This paper presents the various analysis of the power system for operating the new SIHWA tidal power plant. In the analysis of the power system, summer load condition of 2011 is used. Especially, power flow, fault current, voltage and contingency of SIHWA tidal power plant area are analyzed by using PSS/E and there is no problem for the dynamic stability simulation. The new SIHWA tidal power plant is located in near metropolitan area where about 43% amount of the system load is consumed. Therefore, transmission losses are reduced. In addition, system marginal price can be lowered by generating the new SIHWA tidal power plant. The generation pattern of the SIHWA tidal plant is analyzed and the changes of generation are presented for various water levels by control of the rotor angle alpha and beta in water wheel generator.

Rotor dynamic analysis of a tidal turbine considering fluid-structure interaction under shear flow and waves

  • Lass, Andre;Schilling, Matti;Kumar, Jitendra;Wurm, Frank-Hendrik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.154-164
    • /
    • 2019
  • A rotor dynamic analysis is mandatory for stability and design optimization of submerged propellers and turbines. An accurate simulation requires a proper consideration of fluid-induced reaction forces. This paper presents a bi-directional coupling of a bond graph method solver and an unsteady vortex lattice method solver where the former is used to model the rotor dynamics of the power train and the latter is used to predict transient hydrodynamic forces. Due to solver coupling, determination of hydrodynamic coefficients is obsolete and added mass effects are considered automatically. Additionally, power grid and structural faults like grid fluctuations, eccentricity or failure could be investigated using the same model. In this research work a fast, time resolved dynamic simulation of the complete power train is conducted. As an example, the rotor dynamics of a tidal stream turbine is investigated under two inflow conditions: I - shear flow, II - shear flow + water waves.

Long Term Monitoring of Dynamic Characteristics of a Jacket-Type Offshore Structure Using Dynamic Tilt Responses and Tidal Effects on Modal Properties (동적 경사 응답을 이용한 재킷식 해양구조물의 장기 동특성 모니터링 및 조류 영향 분석)

  • Yi, Jin-Hak;Park, Jin-Soon;Han, Sang-Hun;Lee, Kwang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.97-108
    • /
    • 2012
  • Dynamic responses were measured using long-term monitoring system for Uldolmok tidal current pilot power plant which is one of jacket-type offshore structures. Among the dynamic quantities, the tilt angle was chosen because the low frequency response components can be precisely measured by dynamic tiltmeter, and the natural frequencies and modal damping ratio were successfully identified using proposed LS-FDD (least squared frequency domain decomposition) method. And the effects of tidal height and tidal current velocity on the variation of natural frequencies and modal damping ratios were investigated in time and frequency domain. Also the non-parametric models were tested to model the relationship between tidal conditions and modal properties such as natural frequencies and damping ratios.

A Study of Performance estimate and Flow Analysis of the 100kW Counter-Rotating Marine Current Turbine by CFD

  • Kim, Mun-Oh;Kim, Chang-Goo;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.166.1-166.1
    • /
    • 2011
  • The rotor design is fundamental to the performance and dynamic response of the Counter-rotating marine tidal current turbine. The wind industry has seen significant advancement single rotor blade technology, offering considerable knowledge and making it easy to transfer to tidal stream energy converters. In this paper, 3D flow and performance an alysis on a 100 kW counter-rotating marine current turbine blade was carried out by using the 3-D Navier-Stokes commercial solver(ANSYS CFX-11.0) to provide more efficient design techniques to design engineers. The front and rear rotor diameter is 8m and the rotating speed is 24.72rpm. Hexahedral meshing was generated by ICEM-CFD to achieve better quality of results. The rated power and its approaching stream velocity for design are 100 kW and 2 m/s respectively. The pressure distribution on the blade's suction side tells us that the pressure becomes low at the leading edge of the airfoil as it moves from the hub to the tip.

  • PDF