• Title/Summary/Keyword: Dynamic Force Ratio

Search Result 273, Processing Time 0.019 seconds

The Real Time Measurement of Dynamic Radius and Slip Ratio at the Vehicle (차량에서 실시간 동반경 및 슬립율 측정)

  • Lee, Dong-Kyu;Park, Jin-Il;Lee, Jong-Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.89-94
    • /
    • 2006
  • The tire delivering power generated from engine to the ground pulls a vehicle to move. Radius of tires is changeable due to elasticity that depends on the speed of vehicle and traction force. The main objectives on this study are real time measurement of dynamic radius and slip ratio according to the speed and traction force. The dynamic radius is proportional to speed and traction force. According to measurement, the dynamic radius is increased about 3mm under 100km/h compared to stop. It is also increased about 1.5mm when a traction force is supplied as much as 4kN compared to no load state at low speed. There is no strong relationship between slip ratio and vehicle speed. The slip ratio is measured up to 4% under WOT at first stage gear. Through this research, the method of measuring dynamic radius and slip ratio is set up and is expected to be applied to the measurement of traction force in chassis dynamometer or accelerating and climbing ability.

Approximate solution for a building installed with a friction damper : revisited and new result (마찰감쇠기가 설치된 건물 응답의 근사해 : 재 고찰 및 새로운 결과)

  • Min, Kyung-Won;Seong, Ji-Young;Lee, Sung-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.850-854
    • /
    • 2009
  • Approximate analysis for a building installed with a friction damper is revisited to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor (DMF) for the building with combined viscous and friction damping. It is found out that DMF is dependent on friction force ratio and resonance frequency. Linear transfer function from input external force to output building displacement is obtained by simplifying DMF equation. Root mean square of building displacement is derived under earthquake-like random excitation. Finally, design of friction damper is proposed by processing target control ratio, damping ratio factor, and friction force in sequence.

  • PDF

Seismic responses of structure isolated by FPB subject to pounding between the sliding interfaces considering soil-structure interaction

  • Yingna Li;Jingcai Zhang
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.463-475
    • /
    • 2024
  • The study aims to investigate the pounding that occurs between the isolator's ring and slider of isolated structures resulting from excessive seismic excitation, while considering soil-structure interaction. The dynamic responses and poundings of structures subjected a series seismic records were comparatively analyzed for three different soil types and fixed-base structures. A series of parametric studies were conducted to thoroughly discuss the effects of the impact displacement ratio, the FPB friction coefficient ratio, and the radius ratio on the structural dynamic response when considering impact and SSI. It was found that the pounding is extremely brief, with an exceptionally large pounding force generated by impact, resulting in significant acceleration pulse. The acceleration and inter-story shear force of the structure experiencing pounding were greater than those without considering pounding. Sudden changes in the inter-story shear force between the first and second floors of the structure were also observed. The dynamic response of structures in soft ground was significantly lower than that of structures in other ground conditions under the same conditions, regardless of the earthquake wave exciting the structure. When the structure is influenced by pulse-type earthquake records, its dynamic response exhibits a trend of first intensifying and then weakening as the equivalent radius ratio and friction coefficient ratio increase. However, it increases with an increase in the pounding displacement ratio, equivalent radius ratio, friction coefficient ratio, and displacement ratio when the structures are subjected to non-pulse-type seismic record.

Effects of Slenderness ratio on Dynamic Behavior of Cantilever Beam Subjected to Follower Force (종동력을 받는 외팔보의 진동특성에 미치는 세장비의 영향)

  • Son, In-Soo;Yoon, Han-Ik;Ahn, Tae-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.575-578
    • /
    • 2008
  • In this paper, the purpose is to investigate the stability and variation of natural frequency of a Timoshenko cantilever beam subjected to follower force and tip mass. In addition, an analysis of the flutter instability(flutter critical follower force) of a cantilever beam as slenderness ratio is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force is derived via Hamilton;s principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. Finally, the influence of the slenderness ratio and tip mass on the critical follower force and the natural frequency of a Timoshenko beam are investigated.

  • PDF

Design of Friction Dampers for Seismic Response Control of a SDOF Building (단자유도 건물의 지진응답제어를 위한 마찰감쇠기 설계)

  • Min, Kyung-Won;Seong, Ji-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • Approximate analysis for a building installed with a friction damper is performed to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor(DMF). It is found out that DMF is dependent on friction force ratio and resonance frequency. Approximation of DMF and equivalent damping ratio of a friction damper is proposed with such assumption that the building with a friction damper shows harmonic steady-state response and narrow banded response behavior near resonance frequency. Linear transfer function from input external force to output building displacement is suggested from the simplified DMF equation. Root mean square of a building displacement is derived under earthquake-like random excitation. Finally, design procedure of a friction damper is proposed by finding friction force corresponding to target control ratio. Numerical analysis is carried out to verify the proposed design procedure.

Dynamic behavior of boring bar with continuous system analysis (연속계 해석에 의한 보오링 바의 동적 거동에 관한 연구)

  • Kim, Jeong-Suk;Kang, Myeong-Chang;Park, Soo-Kil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.38-46
    • /
    • 1994
  • The vibration amplitude of boring bar is generally large at the tool tip, because it has the high length-diameter(L/D) ratio. A new dynamic cutting force model is presented by considering the change of shear angle under dynamic cutting. The boring bar is modelled as a cantilever with dynamic force acting at the tool end point. Based on this realistic continuous system model, the equation of motion of borring bar is solved by numerical computations. A good agreement is found between the proposed model and the experimental results.

  • PDF

Transfer Function Analysis of Cylindrical Coil Springs by Considering Surging Effect (서징 효과를 고려한 원통형 코일 스프링의 전달 함수 해석)

  • 김대원;신중호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.145-151
    • /
    • 1998
  • This paper addresses the results of an experimental and analytical research of cylindrical coil spring subjected to dynamic behavior. Transfer functions are presented for both deflection and transmitted force as the output with force as the input. Steady state sinusoidal magnitude ratio and transmittance are plotted along with experimental data. It is shown that dynamic characteristic of cylindrical coil spring must be used to enhance the reability of vibration system dynamic behavior analysis in actuating over some frequency.

  • PDF

Effective mode shapes of multi-storey frames subjected to moving train loads

  • Demirtas, Salih;Ozturk, Hasan
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.311-323
    • /
    • 2020
  • This paper deals with the effect of the mode shapes on the dynamic response of a multi-storey frame subjected to moving train loads which are modelled as loads of constant intervals with constant velocity using the finite element method. The multi-storey frame is modelled as a number of Bernoulli-Euler beam elements. First, the first few modes of the multi-storey frame are determined. Then, the effects of force span length to beam length ratio and velocity on dynamic magnification factor (DMF) are evaluated via 3D velocity-force span length to beam length ratio-DMF graphics and its 2D projections. By using 3D and 2D graphics, the directions of critical speeds that force the structure under resonance conditions are determined. Last, the mode shapes related to these directions are determined by the time history and frequency response graphs. This study has been limited by the vibration of the frame in the vertical direction.

Dynamic Stability of Cylindrical Shells Subjected to Follower Forces (종동력을 받는 원통셸의 동적 안정성에 관한 연구)

  • 김현순;김지환
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.336-345
    • /
    • 1998
  • The dynamic instability of cylindrical shell with clamped-free boundary condition subjected to constant follower force or $P_0 + P_1cos {\Omega}_t$ type pulsating follower force is analyzed. The motion of shell is modeled using the shell theory considering rotary inertia and shear deformation, and analyzed with finite element method. In case of constant follower force, the changes of eigenvalues dependent on the magnitude of applied load are investigated and the critical loads are obtained. In case pulsating follower force, instability regions of exicitation frequency are obtained by modal transform with right and left modal matrix and by multiple scales method. The effects of thickness ratio and aspect ratio on the instability of shell are studied.

  • PDF

Dynamic response of adjacent structures connected by friction damper

  • Patel, C.C.;Jangid, R.S.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.149-169
    • /
    • 2011
  • Dynamic response of two adjacent single degree-of-freedom (SDOF) structures connected with friction damper under base excitation is investigated. The base excitation is modeled as a stationary white-noise random process. As the force-deformation behavior of friction damper is non linear, the dynamic response of connected structures is obtained using the equivalent linearization technique. It is observed that there exists an optimum value of the limiting frictional force of the damper for which the mean square displacement and the mean square absolute acceleration responses of the connected structures attains the minimum value. The close form expressions for the optimum value of damper frictional force and corresponding mean square responses of the coupled undamped structures are derived. These expressions can be used for initial optimal design of the friction damper for connected structures. A parametric study is also carried out to investigate the influence of system parameters such as frequency ratio and mass ratio on the response of the coupled structures. It has been observed that the frequency ratio has significant effect on the performance of the friction damper, whereas the effects of mass ratio are marginal. Finally, the verification of the derived close from expressions is made by correlating the response of connected structures under real earthquake excitations.