• Title/Summary/Keyword: Dynamic Description

Search Result 225, Processing Time 0.032 seconds

Baffled fuel-storage container: parametric study on transient dynamic characteristics

  • Lee, Sang-Young;Cho, Jin-Rae;Park, Tae-Hak;Lee, Woo-Yong
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.653-670
    • /
    • 2002
  • In order to ensure the structural dynamic stability of moving liquid-storage containers, the flow motion of interior liquid should be appropriately suppressed by means of mechanical devices such as the disc-type elastic baffle. In practice, the design of a suitable baffle requires a priori the parametric dynamic characteristics of storage containers, with respect to the design parameters of baffle, such as the installation location and inner-hole size, the baffle number, and so on. In this paper, we intend to investigate the parametric effect of the baffle parameters on the transient dynamic behavior of a cylindrical fuel-storage tank in an abrupt vertical acceleration motion. For this goal, we employ the ALE (arbitrary Lagrangian-Eulerian) kinematic description method incorporated with the finite element method.

A Study of Dynamic Modeling of a Magnetic Levitation Vehicle (자기부상열차의 동적 모델링 연구)

  • 한형석;조홍재;김동성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.160-166
    • /
    • 2003
  • Interest in advanced vehicles results in correspondingly increased interest in modeling and simulation of the dynamic behavior of Maglev-type vehicle systems. DADS is a program especially suited for the analysis of multibody mechanical systems. This paper demonstrates the application of DADS to the dynamic modeling and simulation of such advanced vehicles. A brief description is made of the modeling requirements of magnetically levitated systems, along with a summary of some of the related capabilities of DADS. As a case study, an analysis of a vehicle based on the UTM01 system is presented. This paper shows that the presented modeling technique is applicable to the dynamic characteristics evaluation and control law design of Maglev- type vehicles.

Analysis of Dynamic Multiple-Crack Propagation Problem by Element free-Galerkin Method (무요소법을 이용한 다수균열 함유부재의 동적균열전파해석에 관한 연구)

  • 이상호;김효진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.315-322
    • /
    • 2000
  • In this study, an algorithm analyzing dynamic mutiple-crack propagation problem by Meshfree Method is proposed. A short description of Meshfree Method especially, Element-free Galerkin (EFG) method is presented and the elastodynamic fracture theory is summarized. A numerical implementation algorithm for dynamic analysis by Meshfree Method is discussed and an algorithm for mutlple-crack dynamic propagation is also presented. A couple of numerical examples of dynamic crack propagation problem illustrate the performance of the proposed technique. The accuracy of the algorithm is studied in the first example by being compared with experimental results, and the applicability and efficiency of the developed algorithm is studied in the second example.

  • PDF

Design and implementation of a Dynamic Adaptive Streaming System over HTTP (HTTP상에서 동적 적응적 스트리밍 시스템 설계 및 구현)

  • Ban, Tae-Hak;Jung, Sang-Ho;Yu, So-Ra;Kim, Ho-Gyom;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.666-668
    • /
    • 2011
  • Last QoS / QoE technology as part of the HTTP-based adaptive streaming technology has attracted attention. In this paper, HTTP-based adaptive streaming technology Find out about the dynamic. It is based on a dynamic adaptive streaming system over HTTP was designed and implemented. The system converts by the bit rate of MPEG2-TS files, Segment Split, MPD (Media Presentation Description) between servers and clients with the creation of a dynamic and adaptive analysis of network environments over MPD File consists bitrate's player. This diverse network environments, continuous and smooth playback of video will be used in various multimedia fields.

  • PDF

Dynamic analysis of sandwich plate with viscoelastic core based on an improved method for identification of material parameters in GHM viscoelastic model

  • Mojtaba Safari;Hasan Biglari;Mohsen Motezaker
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.743-757
    • /
    • 2023
  • In this paper, the dynamic response of a simply-supported composite sandwich plate with a viscoelastic core based on the Golla-Hughes-McTavish (GHM) viscoelastic model is investigated analytically. The formulation is developed using the three-layered sandwich panel theory. Hamilton's principle has been employed to derive the equations of motion. Since classical models, like kelvin-voigt and Maxwell models, cannot express a comprehensive description of the dynamic behavior of viscoelastic material, the GHM method is used to model the viscoelastic core of the plate in this research. The main advantage of the GHM model in comparison with classical models is the consideration of the frequency-dependent characteristic of viscoelastic material. Identification of the material parameters of GHM mini-oscillator terms is an essential procedure in applying the GHM model. In this study, the focus of viscoelastic modeling is on the development of GHM parameters identification. For this purpose, a new method is proposed to find these constants which express frequency-dependent behavior characterization of viscoelastic material. Natural frequencies and loss factors of the sandwich panel based on ESL and three-layered theories in different geometrics are described at 30℃ and 90℃; also, the comparisons show that obtained natural frequencies are grossly overestimated by ESL theory. The argumentations of differences in natural frequencies are also illustrated in detail. The obtained results show that the GHM model presents a more accurate description of the plate's dynamic response by considering the frequency dependency behavior of the viscoelastic core.

Coupling of Meshfree Method and Finite Element Method for Dynamic Crack Propagation Analysis (무요소법과 유한요소법의 결합에 의한 동적균열전팍문제의 해석)

  • 이상호;김효진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.324-331
    • /
    • 2000
  • In this study, a new algorithm analyzing dynamic crack propagation problem by the coupling technique of Meshfree Method and Finite Element Method is proposed. The coupling procedure of two methods is presented with a short description of Meshfree Method especially, Element-free Galerkin (EFG) method. The elastodynamic fracture theory is presented, and a numerical implementation procedure for dynamic fracture analysis by Meshfree Method is also discussed. A couple of dynamic crack propagation problems illustrate the performance of the propsed technique. The accuracy of numerical solutions by the developed algorithm are compared with those of analytical solutions and experimental ones.

  • PDF

A Study on the State Space Identification Model of the Dynamic System using Neural Networks (신경회로망을 이용한 동적 시스템의 상태 공간 인식 모델에 관한 연구)

  • 이재현;강성인;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.115-120
    • /
    • 1997
  • System identification is the task of inferring a mathematical description of a dynamic system from a series of measurements of the system. There are several motives for establishing mathematical descriptions of dynamic systems. Typical applications encompass simulation, prediction, fault diagnostics, and control system design. The paper demonstrates that neural networks can be used effective for the identification of nonlinear dynamical systems. The content of this paper concerns dynamic neural network models, where not all inputs to and outputs from the networks are measurable. Only one model type is treated, the well-known Innovation State Space model(Kalman Predictor). The identification is based only on input/output measurements, so in fact a non-linear Extended Kalman Filter problem is solved. Even for linear models this is a non-linear problem without any assurance of convergence, and in spite of this fact an attempt is made to apply the principles from linear models, an extend them to non-linear models. Computer simulation results reveal that the identification scheme suggested are practically feasible.

  • PDF

Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity

  • Ahmed, Ridha A.;Al-Maliki, Ammar F.H.;Faleh, Nadhim M.
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.157-167
    • /
    • 2020
  • This paper studies forced vibrational behavior of porous nanocrystalline silicon nanoshells under radial dynamic loads using strain gradient theory (SGT). This type of material contains many pores inside it and also there are nano-size grains which define the material character. The formulation for nanocrystalline nanoshell is provided by first order shell theory and a numerical approach is used in order to solve nanoshell equations. SGT gives a scale factor related to stiffness hardening provided by nano-grains. For more accurate description of size effects due to nano-grains or nano-pore, their surface energy influences have been introduced. Surface energy of inclusion exhibit extraordinary influence on dynamic response of the nanoshell. Also, dynamic response of the nanoshell is affected by the scale of nano-grain and nano-pore.

Design for Safety Flight Dynamic Model for Standard Platform (항공기 표준플랫폼을 위한 안전 비행운동모의 모델 설계)

  • Kim, Hyo-Kwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • Safety flight training can be done, through the platform proposed in this paper. This paper designed a flight dynamic model and identified essential functions in order to enable pilots to simulate a training environment similar to the actual. It also design activity diagram, concept as well as class diagram. This paper presents the main features and direction of aircraft to be equipped in the future standard platforms. By design main class of flight dynamic and description. it will help developer to setup the standard platform for aircraft simulation.

Recognizing Hand Digit Gestures Using Stochastic Models

  • Sin, Bong-Kee
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.807-815
    • /
    • 2008
  • A simple efficient method of spotting and recognizing hand gestures in video is presented using a network of hidden Markov models and dynamic programming search algorithm. The description starts from designing a set of isolated trajectory models which are stochastic and robust enough to characterize highly variable patterns like human motion, handwriting, and speech. Those models are interconnected to form a single big network termed a spotting network or a spotter that models a continuous stream of gestures and non-gestures as well. The inference over the model is based on dynamic programming. The proposed model is highly efficient and can readily be extended to a variety of recurrent pattern recognition tasks. The test result without any engineering has shown the potential for practical application. At the end of the paper we add some related experimental result that has been obtained using a different model - dynamic Bayesian network - which is also a type of stochastic model.

  • PDF