• 제목/요약/키워드: Dry Wear Process

검색결과 69건 처리시간 0.024초

오일미스트 조건에서의 금형강의 최적절삭조건 (Optimum Machining Condition of Die Steel In The Oil-mist Condition)

  • 김상민;김준현;김주현
    • 한국공작기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.59-65
    • /
    • 2006
  • The purposes of using cutting fluid during cutting have been cooling, lubricating, chip washing and anti-corroding. However, the present manufacturing industry restricts the use of cutting fluid because cutting fluid contains poisonous substances which are harmful to the human body. Therefore environmentally conscious machining and technology have more important position in machining process because cutting fluids have significant influence on the environment in milling process. In this study, environmentally conscious machining can be obtained by the way of selecting the optimum machinig conditon using the design of experiment. Cutting using oil-mist showed better cutting characteristics than dry, air and fluid cutting with respect to by cutting force, tool wear and surface roughness. Also, the optimum machining condition for cutting using oil-mist could be selected through Taguchi method.

Experimental Investigation of Concave and Convex Micro-Textures for Improving Anti-Adhesion Property of Cutting Tool in Dry Finish Cutting

  • Kang, Zhengyang;Fu, Yonghong;Chen, Yun;Ji, Jinghu;Fu, Hao;Wang, Shulin;Li, Rui
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • 제5권5호
    • /
    • pp.583-591
    • /
    • 2018
  • Tool-chip adhesion impacts on cutting performance significantly, especially in finish cutting process. To promote cutting tools' anti-adhesion property, the concave micro-grooves texture (MGT) and convex volcano-like texture (VLT) were fabricated separately on lathe tools' rake faces by laser surface texturing (LST). Various orientations of MGT and different area densities (9% and 48%) and regions (partial and full) of VLT were considered in textured patterns designing. The following orthogonal cutting experiments, machining of aluminum alloy 5038, analyzed tools' performances including cutting force, cutting stability, chip shape, rake face adhesion and abrasion. It indicated that under dry finish cutting conditions, MGT contributed to cutting stability and low cutting forces, meanwhile friction and normal force reduced by around 15% and 10%, respectively with a weak correlation to the grooves' orientation. High density VLT tools, on the other hand, presented an obvious anti-adhesion property. A $5{\mu}m$ reduction of crater wear's depth can be observed on textured rake faces after long length cutting and textured rake faces presented half size of BUE regions comparing to the flat tool, however, once the texture morphologies were filled or worn, the anti-adhesion effect could be invalid. The bearing ratio curve was employed to analysis tool-chip contact and durability of textured surfaces contributing to a better understanding of anti-adhesion and enhanced durability of the textured tools.

Effect of Ball End Mill Geometry and Cutting Conditions on Machinability of Hardened Tool Steel

  • Jang, Dong-Y.;Won, S.-T.
    • KSTLE International Journal
    • /
    • 제3권1호
    • /
    • pp.17-22
    • /
    • 2002
  • Roughing of tool steel in its hardened state represents a real challenge in the die and meld industry and process improvement depends on research of tool material, coating technique, and lubrication. However, roughing of hardened steels generates extreme heat and without coolant flooding, tool material cannot withstand the high temperature without choosing the right tools with proper coating. This research conducted milling tests using coated ball end mills to study effects of cutting conditions and geometric parameters of ball end mills on the machinability of hardened tool steel. KP4 steel and STD 11 heat treated steels were used in the dry cutting as the workpiece and TiAIN coated ball end mills with side relief angle of 12$^{\circ}$ was utilized in the cutting tests. Cutting forces, tool wear, and surface roughness were measured in the cutting tests. Results from the experiments showed that 85 m/min of cutting speed and 0.32 mm/rev of feed rate were optimum conditions for better surface finish during rough cutting and 0.26mm/rev with the same cutting speed are optimum conditions in the finish cutting.

원자혼합법으로 증착된 은 박막의 트라이볼로지적 특성에 관한연구 (A Study on the Tribological Characteristics of Thermally Evaporated Silver Films Assisted by Atomic Mixing)

  • 양승호;공호성;윤희성
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.27-34
    • /
    • 2001
  • A new functionally gradient metal coating method using an atomic mixing technique was developed. In this work the effect of silver atomic mixing on the tribological characteristics of silver$.$ films. has been investigated experimentally. Atomic mixing was implemented by using the, bombardment .of accelerated Ar ions during the thermal evaporation coating process of silver films. Experiments were performed in dry conditions using a ball-on-disk test rig at a load range of 19.6 mN - 17.64 N and a sliding velocity of 20 mm/sec. Results showed that the life of functionally gradient silver coating was enhanced about 100 times more than that of thermally evaporated silver coating and 2 times more than that of IBAD silver coating. The functionally gradient. film also showed low friction and wear compared to those of the evaporated silver and

  • PDF

절삭실험을 이용한 저합금강의 유동응력 결정 및 검증 (Determination and Verification of Flow Stress of Low-alloy Steel Using Cutting Test)

  • 안광우;김동후;김태호;전언찬
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.50-56
    • /
    • 2014
  • A technique based on the finite element method (FEM) is used in the simulation of metal cutting process. This offers the advantages of the prediction of the cutting force, the stresses, the temperature, the tool wear, and optimization of the cutting condition, the tool shape and the residual stress of the surface. However, the accuracy and reliability of prediction depend on the flow stress of the workpiece. There are various models which describe the relationship between the flow stress and the strain. The Johnson-Cook model is a well-known material model capable of doing this. Low-alloy steel is developed for a dry storage container for used nuclear fuel. Related to this, a process analysis of the plastic machining capability is necessary. For a plastic processing analysis of machining or forging, there are five parameters that must be input into the Johnson-Cook model in this paper. These are (1) the determination of the strain-hardening modulus and the strain hardening exponent through a room-temperature tensile test, (2) the determination of the thermal softening exponent through a high-temperature tensile test, (3) the determination of the cutting forces through an orthogonal cutting test at various cutting speeds, (4) the determination of the strain-rate hardening modulus comparing the orthogonal cutting test results with FEM results. (5) Finally, to validate the Johnson-Cook material parameters, a comparison of the room-temperature tensile test result with a quasi-static simulation using LS-Dyna is necessary.

Carbon Nanotube 잉크 환경에서의 Si-Diamond-Like Carbon 박막의 내마모 특성 (Tribological Characteristics of Si-Diamond-Like Carbon Films in a Condition with Carbon Nanotube Ink Lubricant)

  • 장길찬;김태규
    • 한국재료학회지
    • /
    • 제21권3호
    • /
    • pp.149-155
    • /
    • 2011
  • We investigated tribological characteristics of diamond-like carbon (DLC) in a condition with carbon nanotube (CNT) content of 1wt% in aqueous solution. Si-DLC films were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process on Al6061 aluminum alloy. In this study, the deposition of DLC films was carried out in vacuum with a chamber pressure of 10-5 to 10-3 Torr achieved by mechanical pump followed by turbo molecular pump. The surface adsorbed oxygen on the Aluminum substrates was removed by passing Ar gas for 10 minutes. The RF power was maintained at 500W throughout the experiment. A buffer layer of HMDSO was deposited on the substrate to improve the adhesion of DLC coating. At this point CH4 gas was introduced in the chamber using gas flow controller and DLC coating was deposited on the buffer layer along with HMDSO for 50 min. The thickness of 1 ${\mu}m$ was obtained for DLC films on aluminum substrates The tribological properties of as synthesized DLC films were analyzed by wear test in the presence of dry air, water and lubricant such as CNT ink.

絹織物 Wash and Wear 加工硏究 (Studies on Silk Textile Wash and Wear Finishing)

  • 최병희;이양후
    • 한국잠사곤충학회지
    • /
    • 제23권1호
    • /
    • pp.47-55
    • /
    • 1981
  • 絹織物加工을 實需要者의 利用度를 增加시키기 爲해 多年間 여러 사람에 의하여 硏究되어 왔으나 天然織維이기 때문에 加工方式으로 性質을 變化시키기는 어려워서 滿足스러운 精度로 이루어지지 못하고 있는 實情에 있다. 絹織物加工은 勿論 그 缺點을 補强하는 同時에 商品的價値도 向上시키는데 目的이 있는데 때로는 有名商標가 品質以上으로 販賣를 左右하는 例도 많다. 特히 絹制品은 歡迎을 받지 못하고 있는 實情에 있다. 이러한 問題點을 解決하기 爲해 筆者는 多年間 硏究를 持績하여 왔든바 一般絹織物의 浸潤後 乾燥時間보다 半減된 時間에 乾燥되는 所謂 Wash and Wear絹加工方法의 開發을 하기에 이르렀다. 그리고 그 加工費用이 極히 經濟性인 탓으로 아무런 부담감 없이 加工處理할 수 있는 特徵을 갖이고 있었다. 1. 繭絲는 吐絲營繭曲線이 S字型으로 되어 있어 浸潤時에는 原狀復舊의 性質이 있어 屈曲狀態를 이룩하게 되어 本加工絹織物이 Wash and Wear이기는 하나 가벼운 다림질이 必要하였다. 2. 이러한 加工은 絹絲蛋白質의 變性을 加工過程에서 1% D.I.S.溶液에 3時間 處理하여 變性誘發시킴으로서 可能하였다. 3. 加工絹의 防皺度, 剛乾度를 洗濯回數를 反復하면서 調査하여 본 結果 未處理絹보다 惡化되지 않았다. 4. 未加工絹도 水洗, 乾燥를 反復하게되면 스스로 變性되는 事實을 알았다. 5. 處理絹과 未處理絹의 强力伸度面의 差異가 없었다.

  • PDF

동일 재질의 투명 및 써클콘택트렌즈 착용 시 정상안과 건성안의 눈물막 안정성 차이 (The Difference in Tear Film Stability between Normal and Dry Eyes by Wearing Clear and Circle Contact Lenses made of the Same Materials)

  • 이세희;박미정;김소라
    • 한국안광학회지
    • /
    • 제21권1호
    • /
    • pp.11-21
    • /
    • 2016
  • 목적: 본 연구에서는 동일재질의 투명 및 써클소프트콘택트렌즈(써클렌즈)를 정상안과 건성안에 착용시켰을 때 착용시간 경과에 따른 눈물막 안정성의 차이를 분석하고자 하였다. 방법: 연구대상자를 눈물량에 따라 정상안과 건성안으로 분류한 후 hilafilcon B 재질과 nelfilcon A 재질의 투명 및 써클렌즈를 각각 착용시키고, 렌즈 착용 30분 후, 6시간 후에 비침입성 눈물막 파괴시간, 렌즈중심안정위치, 눈물막깨짐 시작부위를 측정하여 눈물막 안정성의 변화를 알아보였다. 결과: 정상안과 건성안 모두 투명 및 써클콘택트렌즈 착용 시 착용시간경과에 따라 눈물막파괴시간은 통계적으로 유의한 감소를 보였다. 눈물막깨짐 시작 비율은 두 렌즈 모두 투명렌즈보다 써클렌즈의 주변부에서 높았고, 정상안보다는 건성안의 주변부에서 높게 나타났다. Hilafilcon B 재질보다는 nelfilcon A 재질 렌즈의 주변부에서 눈물막깨짐 시작 비율이 높았으나 착용시간경과에 따른 변화는 서로 다른 양상으로 나타났다. 한편, hilafilcon B 재질의 써클렌즈 착용 시 단위면적 당 눈물막깨짐 개수는 모두 주변부에서 많게 나타났던 반면, nelfilcon A 재질 써클렌즈의 경우는 착용시간 경과에 따라 중심부에서의 수가 증가하였다. 또한, 렌즈중심안정위치는 착용시간 경과에 따라 두 재질 모두 써클렌즈에 비해 투명렌즈가 동공중심 가까이에 존재하였으나 정상안에 비해 건성안의 중심이탈이 크게 나타났다. 결론: 본 연구결과 렌즈착용시간이 경과함에 따라 착색공정을 거친 써클렌즈 뿐만 아니라 투명렌즈도 눈물막에 미치는 영향이 달라질 수 있으며, 렌즈재질에 따라 눈물막 안정성에 영향을 주는 요인 또한 달라짐을 알 수 있었다. 따라서 투명 및 써클렌즈를 착용하고자 할 때에는 착용자의 일일착용시간이나 착용기간 등과 같은 사용습관에 따라 렌즈의 착색공법/염료 뿐만 아니라 렌즈 재질 또한 고려하여 적절한 렌즈를 선택하여야 할 것이다.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.