• Title/Summary/Keyword: Drone Platform

Search Result 57, Processing Time 0.021 seconds

Designing on Scenario-based Drone Platform to Enhancement Security (보안성 향상을 위한 시나리오 기반 드론 플랫폼 설계 연구)

  • Kim, Yanghoon;Hong, Chan-Ki
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.78-83
    • /
    • 2021
  • The new industry drone research is increasing through convergence between 4th industrial revolution technology. In particular, the government indicates the D.N.A platform as a countermeasure of 4th industrial revolution. So, the research topics are remarkable which are using D.N.A platform. On the other hand, the drone for industrial and research has spatial factor based on sequential because, they performance scenario-based mission through control operation. When the drone flights as a control operation, they have necessity apply multi-dimensional methods to improve the security level. So, this study researched a scenario based drone platform to improve the security level. As a result, the space classified as a ground control system, drone, drone data server and designed the application method based on scenario security technology.

3D Library Platform Construction using Drone Images and its Application to Kangwha Dolmen (드론 촬영 영상을 활용한 3D 라이브러리 플랫폼 구축 및 강화지석묘에의 적용)

  • Kim, Kyoung-Ho;Kim, Min-Jung;Lee, Jeongjin
    • Cartoon and Animation Studies
    • /
    • s.48
    • /
    • pp.199-215
    • /
    • 2017
  • Recently, a drone is used for the general purpose application although the drone was builtfor the military purpose. A drone is actively used for the creation of contents, and an image acquisition. In this paper, we develop a 3D library module platform using 3D mesh model data, which is generated by a drone image and its point cloud. First, a lot of 2D image data are taken by a drone, and a point cloud data is generated from 2D drone images. A 3D mesh data is acquired from point cloud data. Then, we develop a service library platform using a transformed 3D data for multi-purpose uses. Our platform with 3D data can minimize the cost and time of contents creation for special effects during the production of a movie, drama, or documentary. Our platform can contribute the creation of experts for the digital contents production in the field of a realistic media, a special image, and exhibitions.

A Study on Ground Control System Design by User Classification to Increase Drone Platform Usability (드론 플랫폼 활용성 증대를 위한 사용자 맞춤형 지상 제어 시스템 설계 연구)

  • Ukjae Ryu;Yanghoon Kim
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.56-61
    • /
    • 2022
  • Various convergence technologies discovered through the 4th industrial revolution are permeating the industry. Drones are being used in industries such as construction, transportation, and national defense based on convergence technology. Quart-copter drone control is being used in a wide range of fields from the visual field of operation with the naked eye to the remote field of view using GCS. If we classify those who operate industrial drones, there are general pilots who directly use drones, instructors who train drone pilots, and mechanics who check the status of drones and use them for a long time. Depending on the shape of the screen of the drone GCS, a user's quick response or key data can be acquired. Accordingly, in this study, GUI characteristics were analyzed for the mission planner GCS and a screen composition method according to the user was proposed.

Development of a Drone Platform by KIGAM for Geological Surveys and Mineral Resource Exploration (지질조사 및 광물자원탐사를 위한 KIGAM 드론 플랫폼 구축)

  • Bang, Eun Seok;Son, Jeong-Sul;Kang, Woong;Yi, Huiuk;Kim, Changryol;Lee, Chang Won;Kim, Bona;Hwang, Seho;No, Sang-Gun;Son, Young-Sun;Cho, Seong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.141-148
    • /
    • 2020
  • A drone platform built by Korea Institute of Geoscience and Mineral Resources (KIGAM) is introduced. The platform consists of various drone systems developed at KIGAM for photogrammetry, remote exploration, physical exploration, field operation methods, a vehicle-based drone control center, as well as a drone data platform for data storage, sharing, analysis, and visualization of the acquired data. The performance of the drone platform is verified using results obtained with the various systems, which are tested individually and in various combined applications. Finally, the possibility of using the KIGAM drone platform for geological surveys and mineral resource exploration is discussed.

On the Scaling of Drone Imagery Platform Methodology Based on Container Technology

  • Phitchawat Lukkanathiti;Chantana Chantrapornchai
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.442-457
    • /
    • 2024
  • The issues were studied of an open-source scaling drone imagery platform, called WebODM. It is known that processing drone images has a high demand for resources because of many preprocessing and post-processing steps involved in image loading, orthophoto, georeferencing, texturing, meshing, and other procedures. By default, WebODM allocates one node for processing. We explored methods to expand the platform's capability to handle many processing requests, which should be beneficial to platform designers. Our primary objective was to enhance WebODM's performance to support concurrent users through the use of container technology. We modified the original process to scale the task vertically and horizontally utilizing the Kubernetes cluster. The effectiveness of the scaling approaches enabled handling more concurrent users. The response time per active thread and the number of responses per second were measured. Compared to the original WebODM, our modified version sometimes had a longer response time by 1.9%. Nonetheless, the processing throughput was improved by up to 101% over the original WebODM's with some differences in the drone image processing results. Finally, we discussed the integration with the infrastructure as code to automate the scaling is discussed.

oneM2M Standard based Low Altitude Drone/UAV Traffic Management System (oneM2M 표준 기반 저고도 무인기 관리 및 운영시스템)

  • Ahn, Il-Yeop;Park, Jong-Hong;Sung, Nak-Myoung;Kim, Jaeho;Choi, Sung-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.301-307
    • /
    • 2018
  • Unmanned Aerial Vehicles (i.e., drone) are gaining a lot of interest from a wide range of application domains such as infrastructure monitoring and parcel delivery service. In those service scenarios, multiple UAVs are involved and should be reliably operated by so-called UAV management system. For that, we propose oneM2M standard based UAV management and control system which is specifically targeted at traffic management of low-altitude UAVs. In this paper, we include oneM2M platform architecture and its implementation for UAV management system in conjunction with UAV interworking procedure.

A Study on the Dual Control Platform for Drone Field Training (드론 교육현장 이중화 제어 플랫폼 연구)

  • Ryu, Ukjae;Kim, Yanghoon
    • Journal of Platform Technology
    • /
    • v.10 no.2
    • /
    • pp.20-26
    • /
    • 2022
  • Interest and investment in drones that apply the concept of the 4th industrial revolution and ICT convergence advanced technology are continuing. The purpose of drone operation has been widely spread from the initial military use to the use of various industries such as construction, forestry, facilities, and agricultural support. In these industries, the training of pilots who can actually operate drones is increasing centering on the qualification system. However, the detailed standards including the training place, training place, educational environment, and education method for nurturing pilots are ambiguous, so the education through the oral instruction of the training instructor is continuing at the drone training site. In order to solve this problem, this study conducted a study on a dual control platform in which a training instructor could directly intervene in the pilot's flying drone to execute a map in order to improve the quality of synesthesia, which is essential in the field.

Digital Twin-based Cadastral Resurvey Performance Sharing Platform Design and Implementation (디지털트윈 기반의 지적재조사 성과공유 플랫폼 설계 및 구현)

  • Kim, IL
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.1
    • /
    • pp.37-46
    • /
    • 2023
  • As real estate values rise, interest in cadastral resurvey is increasing. Accordingly, a cadastral resurvey project is actively underway for drone operation through securing work efficiency and improving accuracy. The need for utilization and management of cadastral resurvey results (drone images) is being raised, and through this study, a 3D spatial information platform was developed to solve the existing drone image management and utilization limitations and to provide drone image-based 3D cadastral information. It is proposed to build and use. The study area was selected as a district that completed the latest cadastral resurvey project in which the study was organized in February 2023. Afterwards, a web-based 3D platform was applied to the study to solve the user's spatial limitations, and the platform was designed and implemented based on drone images, spatial information, and attribute information. Major functions such as visualization of cadastral resurvey results based on 3D information and comparison of performance between previous cadastral maps and final cadastral maps were implemented. Through the open platform established in this study, anyone can easily utilize the cadastral resurvey results, and it is expected to utilize and share systematic cadastral resurvey results based on 3-dimensional information that reflects the actual business district. In addition, a continuous management plan was proposed by integrating the distributed results into one platform. It is expected that the usability of the 3D platform will be further improved if a platform is established for the whole country in the future and a service linked to the cadastral resurvey administrative system is established.

Flow Interaction of Sailing Drone using Numerical Method

  • Ngoc, Pham Minh;Choi, Min-Seon;Yang, Changjo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.230-232
    • /
    • 2019
  • There is an accelerating need for ocean sensing where autonomous vehicles can play a key role in assisting engineers, researcher and scientists with environmental monitoring and collecting oceanographic data. This paper is performed to develops an autonomous sailing drone to be used as a sensor carrying platform for autonomous data acquisition at Sea. From a sailing drone design viewpoint, it is important to establish reliable prediction methods for sailing drone's resistance. The required power for the propulsion unit depends on the ship resistance and speed. There are three solutions for the prediction of ship resistance as follow analytical methods, model tests in tanks and Computational Fluid Dynamics (CFD). The present paper aims at simulating sailing drone friction resistance using numerical method. The dynamic mesh motion is used to describe the sailing drone movement.

  • PDF

Study on Analysis of Vibration Characteristics and Modal Test for a Quad-Rotor Drone (쿼드로터형 드론의 진동특성 분석 및 실험에 관한 연구)

  • Kim, Minsong;Kim, Jaenam;Byun, Youngseop;Kim, Jeong;Kang, Beomsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.707-714
    • /
    • 2016
  • This paper describes analysis results of vibration characteristics and modal test for a small-scale quad-rotor drone. The rotor arm has a slender body with a propeller and motor at its tip. Rotor system generates excitation for an unbalanced mass. Therefore, the drone platform is involved in the possibility of resonance. For advance identification of the possibility of resonance, confirmation of eigen-mode being closest to the propeller operation range is necessary. Material properties of CFRP tubes used for the rotor arm were acquired by finding the natural frequency based on Rayleigh method. A simplified quad-rotor FE model consisting of rotor arm assembly with tip mass was built to perform numerical analysis, and a free-free boundary condition was applied to provide flight status. Modal tests for the actual platform with impact hammer instrument were performed to verify analysis results. Separation margin from hazardous eigen-mode was checked on the propeller operation range.