• Title/Summary/Keyword: Driver circuit

Search Result 535, Processing Time 0.019 seconds

The PLD Design of New Scheme LCD Driver Circuit (새로운 LCD 구동회로의 PLD 설계)

  • 이주현;이승호
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.947-950
    • /
    • 1999
  • The PLD design of new scheme LCD driver circuit is described in this paper. A new scheme LCD driver circuit doesn't used microprocessor for the convenience of users. A new scheme LCD driver circuit consists of 4 main parts, that is, a serial/parallel communication control block part, a LCD controller part, a LCD driver part and a RAM/ROM control block part. The validity and efficiency of the proposed LCD driver circuit have been verified by simulation and by ALTERA EPM7192SQC160-15 PLD implementation in VHDL. After comparing this LCD driver circuit to specify it was verified that the developed LCD driver circuit showed has good performances, such as low cost, convenience of users.

  • PDF

Distributed Power Conversion LED Driver Circuit using Parasitic Inductance (기생인덕턴스 성분을 이용한 분산형 전력변환 LED 구동회로)

  • Kim, Sang-Eon;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.117-122
    • /
    • 2013
  • The distributed power conversion LED driver circuit using parasitic inductance is proposed in this paper. while the conventional LED driver circuit is composed of the large size devices and heatsinks, the proposed circuit can be realized with the small sized no heatsink based. since the processing power can be effectively distributed. Also by using the wire parasitic inductance of the LED string, the proposed circuit can be implemented without external magnetic device. As a result, the proposed circuit which features the small size and volume con be realized even without LED driver module(LDM) board. since, all the device can be attached to the existing LED array Module(LAM) board. Therefore, it features that cost savings and volume reduction of circuit. To confirm the validity of the proposed circuit, theoretical analysis and experimental results from a distributed power conversion LED driver circuit prototype are presented.

Silicon-based 0.69-inch AMOEL Microdisplay with Integrated Driver Circuits

  • Na, Young-Sun;Kwon, Oh-Kyong
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.35-43
    • /
    • 2002
  • Silicon-based 0.69-inch AMOEL microdisplay with integrated driver and timing controller circuits for microdisplay applications has been developed using 0.35 ${\mu}m$ l-poly 4-metal standard CMOS process with 5 V CMOS devices and CMP (Chemical Mechanical Polishing) technology. To reduce the large data programming time consumed in a conventional current programming pixel circuit technique and to achieve uniform display, de-amplifying current mirror pixel circuit and the current-mode data driver circuit with threshold roltage compensation are proposed. The proposed current-mode data driver circuit is inherently immune to the ground-bouncing effect. The Monte-Carlo simulation results show that the proposed current-mode data driver circuit has channel-to-channel non-uniformity of less than ${\pm}$0.6 LSB under ${\pm}$70 mV threshold voltage variaions for both NMOS and PMOS transistors, which gives very good display uniformity.

Power factor improvement of LED driver using Valley-fill circuit and a Boosting Inductor (밸리 필 회로 및 부스팅 인덕터를 이용한 LED 구동회로의 역률 개선)

  • Park, Chong-Yeun;Lee, Hak-Beom;Yoo, Jin-Wan
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.103-107
    • /
    • 2011
  • In this paper, a method is proposed to improve power factor and the input current THD in LED driver circuit. The researched circuit consists of a valley-fill circuit and boosting inductor and a Buck converter. Valley-fill circuit is a passive PFC and simplified structure, the buck converter is operated with current feedback. The switching frequency is 50KHz in LED driver circuit and LED forward current is constant. A valley-fill type PFC circuit for LED driver(15Watt) has been implemented, and the validity of proposed method is shown by is simulation and experimental result.

  • PDF

A Study on the Synchronous Rectifier Driver Circuits in the LLC Resonant Half-Bridge Converter (LLC 공진형 하프브릿지 컨버터의 동기정류기 구동회로에 관한 연구)

  • Ahn, Tae-Young;Im, Bum-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.79-86
    • /
    • 2016
  • In this paper, we propose a current-driven synchronous rectifier driver circuit for LLC resonant half-bridge converters. The proposed driver circuit detects a relatively low current in the primary side of the transformer although a large current is flowing in the secondary side. Due to this feature, the driver circuit has a simple circuit structure and stabilizes the switching operation with a logic-level switching voltages for the synchronous rectifier. The operation and performance of the proposed driver circuit are confirmed with a prototype of 1kW class LLC resonant half-bridge converter. The experimental results proved that the proposed synchronous rectifier driver method improves the power conversion efficiency by around 1% and reduces the internal power loss by 17W.

Cost-effective single board PDP sustaining driver with dual resonant method

  • Lim, Hyun-Muk;Eom, Cheol-Hwan;Lee, Jun-Young
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.446-448
    • /
    • 2008
  • A new plasma display panel sustaining driver using single side sustaining technique with the dual resonant method is proposed. Since this circuit enables to reduce switches in energy recovery circuit with keeping voltage stress like that of prior circuit, it can be low cost circuit comparing with a conventional driver. To integrate sustain function into one side with single power source in the driver, a charge pump method is adopted to make negative sustaining voltage and achieve dual resonant energy recovery on sustaining modes.

  • PDF

A New Pre-Emphasis Driver Circuit for a Packet-Based DRAM (패킷 방식의 DRAM에 적용하기 위한 새로운 강조 구동회로)

  • Kim, Jun-Bae;Kwon, Oh-Kyong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.4
    • /
    • pp.176-181
    • /
    • 2001
  • As the data rate between chip-to-chip gets high, the skin effect and load of pins deteriorate noise margin. With these, noise disturbances on the bus channel make it difficult for receiver circuits to read the data signal. This paper has proposed a new pre-emphasis driver circuit which achieves wide noise margin by enlarging the signal voltage range during data transition. When data is transferred from a memory chip to a controller, the output boltage of the driver circuit reaches the final values through the intermediate voltage level. The proposed driver supplies more currents applicable to a packet-based memory system, because it needs no additional control signal and realizes very small area. The circuit has been designed in a 0.18 ${\mu}m$ CMOS process, and HSPICE simulation results have shown that the data rate of 1.32 Gbps be achieved. Due to its result, the proposed driver can achieved higher speed than conventional driver by 10%.

  • PDF

Operation of NMOSFET-only Scan Driver IC for AC PDP (NMOSFET으로 구성된 AC PDP 스캔 구동 집적회로의 동작)

  • 김석일;정주영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.474-480
    • /
    • 2003
  • We designed and tested a new scan driver output stage. Compared to conventional CMOS structured scan driver IC′s, the new NMOSFET-only scan driver circuit can reduce the chip area and therefore, the chip cost considerably. We confirmed the circuit operation with open drain power NMOSFET IC′s by driving 2"PDP test panel. We defined critical device parameters and their optimization methods lot the best circuit performance.

Cost-effective Single Board PDP Sustaining Driver with Dual Resonant Method

  • Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.93-99
    • /
    • 2009
  • A new plasma display panel sustaining driver using single side sustaining technique with a dual resonant method is proposed in this paper. Since this circuit enables to keep device voltage stress same as the prior circuit, it can be a low cost circuit compared to a conventional driver. To integrate the sustaining function into one side with a single power source in the driver, a charge pump method is adopted to make negative sustaining voltage and to achieve dual resonant energy recovery on the sustaining modes.

원격측정명령처리기 릴레이구동 회로 설계 및 구현

  • Kim, Joong-Pyo;Koo, Ja-Chun
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.170-176
    • /
    • 2004
  • In this study, the relay driver circuit which controls the spacecraft configuration change are implemented and validated. First of all, the specification of the relay driver circuit is defined, and then its circuit meeting the specification defined is designed. In order to verify the design of the relay driver circuit, its circuit was simulated, and then it's confirmed that the relay pulse current and voltage level defined in the specification are obtained, and the results obtained through the functional test of the relay driver circuit are compared and well matched with the simulation results. Also the worst case analysis for confirming the stable operation of the relay driver circuit under the tolerance of each component is performed.

  • PDF