• Title/Summary/Keyword: Drilling Design

Search Result 269, Processing Time 0.027 seconds

Effects of Sowing Method and Summer Management on Yield , Dead Matter , Weed Development and Ground Cover of Orchargrass (Dactylis glomerata L.) Meadow (파종방법 및 여름철관리가 Orchargrass ( Dactylis glomerata L. ) 채초지의 수량 , 고사물량 , 잡초발생 및 피복율에 미치는 영향)

  • 권찬호;김동암
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.2
    • /
    • pp.71-78
    • /
    • 1987
  • This experiment was carried out to examine the effects of sowing method and summer management on the dry matter yield, dead matter, weed development and ground cover of orchardgrass (Dactylis glomerata L.) meadow. The experiment was allocated as a split-split plot design with three replications. The main plots were sowing method of drilling and broadcasting, sub plots were drainage of experimental field, adequate and inadequate, and sub-sub plots were cutting timeof orchardgrass, cutting before rainy season started and cutting after rainy season ended. The experiment was undertaken over a period of 14 months from September, 1983 to October, 1984. The results obtained are summarized as follows: 1. There were no significant differences in dry matter yield among treatments at the first cutting, but cutting before rainy season produced significantly more forage yield ($P{\le}0.01$) than cutting after rainy season at the second and third cuts. At the third cutting, drilled orchardgrass meadow showed a significant dry matter yield ($P{\le}0.05$) than broadcast orchardgrass meadow, 2. The dead matter of orchardgrass was accumulated only at the second cutting when orchardgrass meadow cut after rainy season. Orchardgrass produced in the adequate and inadequate drainage plots consisted 20.4 and 35.9% of dead material, respectively, but no significant difference was found between two drainage treatments. 3. Drilled orchardgrass meadow produced significantly less weeds ($P{\le}0.05$) than broadcast orchardgrass meadow, but the plots cut after rainy season produced significantly more weeds ($P{\le}0.01$) than the plots cut before rainy season. 4. The percent ground cover of orchardgrass in the plots cut before rainy season was significantly higher ($P{\le}0.01$) than that in the plots cut after rainy season at the second cutting. Drilled plots showed a slight increase in the ground cover than the broadcast, but the difference was not significant. The same trend of ground cover of the meadow estimated at the second cutting was sustained after the third cutting. 5. Based on the results of the experiment, it indicates that the second cut of orchardgrass should be made before rainy season related for maintaining high yield of the meadow. Drilling as a sowing method of orchardgrass meadow could be adopted in the view point of reducing weed development.

  • PDF

Site Classification for Incheon According to Site-Specific Seismic Response Parameters by Estimating Geotechnical Spatial Information Based on GIS (GIS 기반 지반공간정보 추정을 통한 부지고유 지진응답 매개변수 기반 인천 지역의 부지분류)

  • SUN, Chang-Guk;KIM, Han-Saem
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.17-35
    • /
    • 2016
  • Earthquake-induced disasters are often more severe in locations with soft soils than firm soils or rocks due to differences in ground motion amplification. On a regional scale, such differences can be estimated by spatially predicting subsurface soil thickness over the entire target area. In general, soil deposits are generally deeper in coastal or riverside areas than in inland regions. In this study, a coastal metropolitan area, Incheon, was selected to assess site effects and provide information on seismic hazards. Spatial prediction of geotechnical layers was performed for the entire study area within the GIS framework. Approximately 7,000 existing borehole drilling data in the Incheon area were gathered and archived into the GIS Database (DB). In addition, surface geotechnical data were acquired from a walkover survey. Based on the built geotechnical DB, spatial zoning maps of site-specific seismic response parameters were created and presented for use in a regional seismic strategy. Site response parameters were performed to determine site coefficients for seismic design over the entire target area and compared with each other. Site classifications and subsequent seismic zoning were assigned based on site coefficients. From this seismic zonation case study in Incheon, we verified that geotechnical GIS-DB can create spatial zoning maps of site-specific seismic response parameters that are useful for seismic hazard mitigation particularly in coastal metropolitan areas.

Evaluation of Insertion of torque and Pull-out strength of mini-screws according to different thickness of artificial cortical bone (다양한 교정용 미니 스크류의 인공 피질골 두께에 따른 삽입 토오크와 Pull-out 강도 비교)

  • Song, Young-Youn;Cha, Jung-Yul;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.37 no.1 s.120
    • /
    • pp.5-15
    • /
    • 2007
  • Objective: The purpose of this study was to evaluate the mechanical performance of mini-screws during insertion into artificial bone with use of the driving torque tester (Biomaterials Korea, Seoul, Korea), as well as testing of Pull-out Strength (POS). Methods: Experimental bone blocks with different cortical bone thickness were used as specimens. Three modules of commercially available drill-free type mini-screws (Type A; pure cylindrical type, Biomaterials Korea, Seoul, Korea, Type B; partially cylindrical type, Jeil Medical, Seoul, Korea, Type C; combination type of cylindrical and tapered portions, Ortholution, Seoul, Korea), were used. Results: Difference in the cortical bone thickness had little effect on the maximum insertion torque (MIT) in Type A mini-screws. But in Type B and C, MIT increased as the cortical bone thickness Increased. MIT of Type C was highest in all situations, then Type B and Type A in order. Type C showed lower POS than Type A or B in all situations. There were statistically significant correlations between cortical bone thickness and MIT, and POS for each type of the mini-screws. Conclusion: Since different screw designs showed different insertion torques with increases in cortical bone thickness, the best suitable screw design should be selected according to the different cortical thicknesses at the implant sites.

Joining High-Strength Steel and Al6061 Sheet Using Hole Clinching Process (Hole 클린칭을 이용한 고장력강판과 Al6061 이종소재의 접합)

  • Ahn, Nam-Sik;Lee, Chan-Joo;Lee, Jung-Min;Ko, Dae-Cheol;Lee, Seon-Bong;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.691-698
    • /
    • 2012
  • The joining of aluminum and HSS (high-strength steel) by the conventional clinching process is limited by the low formability of HSS. Defects in the clinching joint, such as necking of the upper sheet, cracks, and lack of interlocking, are produced by the different ductility properties of HSS and aluminum. In this study, we propose the hole clinching process for joining Al6061 and SPFC440, in which deformation of SPFC440 is avoided by drilling a hole in the SPFC440. The dimensions of the interlocking in the hole-clinched joint necessary to provide the required joint strength were determined. Based on the volume constant of the hole clinching process, the shapes of the tools were designed by finite element (FE)-analysis. A hole clinching experiment was performed to verify the proposed process. A cross-section of the joint showed good agreement with the results of the FE-analysis. The lap shear strength was found to be 2.56 kN, which is higher than required joint strength.

Predicting ground condition ahead of tunnel face utilizing electrical resistivity applicable to shield TBM (Shield TBM에 적용 가능한 전기비저항 기반 터널 굴착면 전방 예측기술)

  • Park, Jin-Ho;Lee, Kang-Hyun;Shin, Young-Jin;Kim, Jae-Young;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.599-614
    • /
    • 2014
  • When tunnelling with TBM (Tunnel Boring Machine), accessibility to tunnel face is very limited because tunnel face is mostly occupied by a bunch of machines. Existing techniques that can predict ground condition ahead of TBM tunnel are extremely limited. In this study, the TBM Resistivity Prediction (TRP) system has been developed for predicting anomalous zone ahead of tunnel face utilizing electrical resistivity. The applicability and prediction accuracy of the developed system has been verified by performing field tests at subway tunnel construction site in which an EPB (Earth Pressure Balanced) shield TBM was used for tunnelling work. The TRP system is able to predicts the location, thickness and electrical properties of anomalous zone by performing inverse analysis using measured resistivity of the ground. To make field tests possible, an apparatus was devised to attach electrode to tunnel face through the chamber. The electrode can be advanced from the chamber to the tunnel face to fully touch the ground in front of the tunnel face. In the 1st field test, none of the anomalous zone was predicted, because the rock around the tunnel face has the same resistivity and permittivity with the rock ahead of tunnel face. In the 2nd field test, 5 m thick anomalous zone was predicted with lower permittivity than that of the rock around the tunnel face. The test results match well with the ground condition predicted, respectively, from geophysical exploration, or directly obtained either from drilling boreholes or from daily observed muck condition.

Microzonation on Site-specific Seismic Response at a Model Area in Seoul Using GIS (GIS를 이용한 서울 시범 지역에서의 부지고유 지진 응답의 정밀구역화)

  • Sun, Chang-Guk;Chun, Sung-Ho;Jang, Eui-Ryong;Chung, Choong-Ki
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.139-150
    • /
    • 2007
  • As computer technology has been rapidly advanced, geographic information system (GIS) is recently used in many disciplines. In this study, for a model area in Seoul, seismic hazard potential relating to site effects, which are influenced by the subsurface geotechnical conditions, was estimated using the GIS tool. The distribution of pre-existing borehole drilling data in Seoul metropolitan area was examined for the regional estimation of site-specific seismic responses at the model area. Spatial geo-layers across the entire model area were predicted by constructing a GIS-based geotechnical information system (GTIS). A microzonation of site period $(T_G)$ for estimating site-specific seismic responses at the model area was performed within the GTIS. The spatial microzoning map of $T_G$ indicated seismic vulnerability of two- to four-storied buildings in the model area. Furthermore, a site classification map for determining the design ground motion was established based on the $T_G$ within the GTIS. This informed that most of location in the model area was categorized into current site classes C and D. This seismic microzonation framework for the model area could be applicable particularly in the entire Seoul metropolitan area based on the pre-existing borehole data.

Development of Digital-Image-Correlation Technique for Detecting Internal Defects in Simulated Specimens of Wind Turbine Blades (풍력 블레이드 모의 시편의 내부 결함 검출을 위한 이미지 상관법 기술 개발)

  • Hong, Kyung Min;Park, Nak Gyu
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.5
    • /
    • pp.205-212
    • /
    • 2020
  • In the performance of a wind turbine system, the blades play a vital role. However, they are susceptible to damage arising from complex and irregular loading (which may even cause catastrophic collapse), and they are expensive to maintain. Therefore, it is very important both to find defects after blade manufacturing is completed and to find damage after the blade is used for a certain period of time. This study provides a new perspective for the detection of internal defects in glass-fiber- and carbon-fiber-reinforced panels, which are used as the main materials in wind turbine blades. A gap or fracture between fiber-reinforced materials, which may occur during blade manufacturing or operation, is simulated by drilling a hole 5 mm in diameter in the middle layer of the laminated material. Then, a digital-image-correlation (DIC) method is used to detect internal defects in the blade. Tensile load is applied to the fabricated specimen using a tensile tester, and the generated changes are recorded and analyzed with the DIC system. In the glass-fiber-reinforced laminated specimen, internal defects were detected from a strain value of 5% until the end of the experiment, while in the case of the carbon-fiber-reinforced laminated specimen, internal defects were detected from 1% onward. It was proved using the DIC system that the defect was detected as a certain level of strain difference developed around the internal defects, according to the material properties.

A numerical study on the optimum spacing of disc cutters considering rock strength and penetration depth using discrete element method (암반강도 및 압입깊이에 따른 디스크커터의 최적간격 산정을 위한 개별요소법 기반 수치해석 연구)

  • Lee, Sang Yun;Song, Ki-il;Jung, Ju Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.383-399
    • /
    • 2020
  • Optimizing the spacing of the disc cutter is a key element in the design of the TBM cutter head, which determines the drilling performance of the TBM. The full-scale linear cutting test is known as the most reliable and accurate test for calculating the spacing of the disc cutter, but it has the disadvantage of costly and time-consuming for the full-scale experiment. In this study, through the numerical analysis study based on the discrete element method, the tendency between Specific Energy-S/P ratio according to uniaxial compression strength and penetration depth of rock was analyzed, and the optimum spacing of 17-inch disc cutter was derived. To examine the appropriateness of the numerical analysis model, the rolling force acting on the disc cutter was compared and reviewed with the CSM model. As a result of numerical analysis for the linear cutting test, the rolling force acting on the disc cutter was analyzed to be similar to the rolling force derived from the theoretical formula of the CSM model. From the numerical analysis on 5 UCS cases (50 MPa, 70 MPa, 100 MPa, 150 MPa, 200 MPa), it is found that the range of the optimum spacing of the disc cutter decreases as the rock strength increases. And it can be concluded that 80~100 mm of disc cutter spacing is the optimum range having minimum specific energy regardless of rock strength. This tends to coincide with the optimal spacing of previously reported disk cutters, which underpins the disk cutter spacing calculated through this study.

A study on correlation between electrical resistivity obtained from electrical resistivity logging and rock mass rating in-situ tunnelling site (전기비저항 검층으로 얻은 전기비저항과 터널 현장 암반등급의 상관관계에 관한 연구)

  • Lee, Kang-Hyun;Seo, Hyung-Joon;Park, Jin-Ho;Ahn, Hee-Yoon;Kim, Ki-Seog;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.503-516
    • /
    • 2012
  • Rock mass rating (RMR) is the key factor when designing the appropriate support pattern of tunnel projects. Borehole drilling is usually performed along the tunnel route in order to determine the rock mass rating to be used for tunnel design. The rock mass rating at the non-boring region between boreholes is usually assessed through geophysical surveys such as electrical prospecting, seismic prospecting, etc. Many studies were carried out to find out the correlation between electrical resistivity and rock mass rating. However, most researches were aimed at obtaining the relationship between the two parameters utilizing experimental results obtained from laboratory tests or electrical prospectings. In this paper, efforts were made to analyze and obtain relationships between the electrical resistivity obtained from in-situ electrical resistivity logging data and the rock mass rating. Correlation studies using field data showed that the electrical resistivity is highly correlated with the rock mass rating with the determination coefficient more than 90%. The correlation analysis was also carried out between RMR classification parameters and the electrical resistivity. It was shown that the correlation between the condition of discontinuities and the electrical resistivity was very high with the determination coefficient more than 80%; that between the groundwater condition and the electrical resistivity was very low with the determination coefficient less than 57%.

Effects of Planting Density on Agronomic Traits and Yield in Bupleurum falcatum L. (시호(柴胡)의 재식밀도(栽植密度)가 생육(生育)과 수량(收量)에 미치는 영향(影響))

  • Kim, Young-Guk;Bang, Jin-Ki;Yu, Hong-Seob;Lee, Seoung-Tack
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.1
    • /
    • pp.67-71
    • /
    • 1997
  • Bupleurum falcatum is one of the oldest medicinal crop spontaneously generated as well as cultivated by man and successfully grown during the summer season in Korea. This study was conducted to examine the effect of planting density in the row spacing and hill spacing system using machine seeder on major agronomic traits, yield and labor saving. In 1993 and 1994, a spilt plot design was used with row spacing as the main plot and hill spacing as subplot. Labor saving efficency of the machine seeder reduced 96% than the hand seeding in sowing time required. Number of seeding stand increased, but stem height and number of nodes did not affect with different density in each row and hill spacing. There were reduced with narrow hill spacing on stem diameter, number of branches, shoot weight and root traits. There was no significant interaction between row and hill spacing for any major traits studied except shoot weight. Yield was more increase at 20cm than at 30cm row spacing. For these studies the optiomum density appears to be between drilling or 5cm hill spacing with 20cm row spacing. A highly significant positive correlation was appeared between number of seedling stand and root yield.

  • PDF